Toric non-abelian Hodge theory II

joint with Nick Proudfoot

Tamás Hausel

Chair of Geometry, EPF Lausanne http://geom.epfl.ch/Hausel/talks/pdf

Geometry of Moduli Spaces
CIRM, Luminy
October 2015

- Simpson (1990), Hitchin (1987) for Riemann surfaces
- G complex reductive algebraic group, e.g. $\mathrm{G}=\mathrm{GL}_{n}(\mathbb{C})$
C smooth complex projective curve (w. decorations)
- $\mathcal{M}_{\mathrm{B}}:=H_{\mathrm{B}}^{1}(C, \mathrm{G})=\left\{\begin{array}{c}\text { moduli of representations } \\ \text { of } \pi_{1}(C) \rightarrow \mathrm{G}\end{array}\right\}$
- $\mathcal{M}_{\mathrm{DR}}:=H_{\mathrm{DR}}^{1}(C, \mathrm{G})=\{$ moduli of flat G-connections on $C\}$
- $\mathcal{M}_{\mathrm{Dol}}:=H_{\text {Dol }}^{1}(C, G)=\{$ moduli of G-Higgs bundles on $C\}$
- Non-Abelian Hodge Theorem: $\mathcal{M}_{\text {Dol }} \cong{ }_{\text {diff }} \mathcal{M}_{\mathrm{DR}} \stackrel{\tau_{R H}}{=}{ }_{\text {an }} \mathcal{M}_{\mathrm{B}}$
- Hitchin map: $\begin{array}{cccc}\chi: \mathcal{M}_{\text {Dol }} & \rightarrow & \mathcal{A} \\ (E, \phi) & \mapsto & \operatorname{CharPol}(\phi)\end{array}$
proper, integrable system
- often $0 \in \mathcal{A}$ when $\chi^{-1}(0) \sim \mathcal{M}_{\text {Dol }}$ nilpotent cone
- $C \cong \mathbb{P}^{1} \leadsto \mathcal{M}_{\mathrm{DR}}^{*}:=\{$ moduli of flat connections on $C \times \mathrm{G}\}$
- $\mathcal{M}_{\mathrm{DR}}^{*} \subset \mathcal{M}_{\mathrm{DR}}$ open, $\mathcal{M}_{\mathrm{DR}}^{*} \cong Q$ star-shaped quiver variety

Conjecture

(1) (Hodge-Tate)

$$
h^{p, q}\left(H^{*}\left(\mathcal{M}_{B}\right)\right) \neq 0 \Rightarrow p=q
$$

(2) (Curious Hard Lefschetz)

$$
\alpha:=[\Re(\Omega)] \in H^{2 ; 2,2}\left(\mathcal{M}_{\mathrm{B}}\right)
$$

$$
\begin{array}{rlll}
L^{\prime}: \quad G r_{\operatorname{dim}-2 l}^{W} H^{i-l}(\mathcal{M}) & \xlongequal{\cong} & G r_{\operatorname{dim}+2 l}^{W} H^{i+\prime}(\mathcal{M}) \\
x & \mapsto & x \cup \alpha^{\prime}
\end{array}
$$

3 (purity conjecture)

$$
W_{k} H^{k}\left(\mathcal{M}_{\mathrm{B}}\right) \stackrel{\tau_{\mathrm{RH}}^{*}}{\cong} H^{k}\left(\mathcal{M}_{\mathrm{DR}}^{*}\right)
$$

(4) $(P=W)$
perverse filtration P on $H^{*}\left(\mathcal{M}_{\text {Dol }}\right)$ induced by Hitchin map χ

$$
W_{2 k} H^{*}\left(\mathcal{M}_{\mathrm{B}}\right)=P_{k} H^{*}\left(\mathcal{M}_{\mathrm{Dol}}\right)
$$

- proved for $\mathrm{G}=\mathrm{GL}_{2}$ and many consintency checks
- Bielawski-Dancer (2000) Hausel-Sturmfels (2002)
- $A \in M_{d \times n}(\mathbb{Z})$ surj. $\leadsto 0 \rightarrow \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \rightarrow 0$
- taking Hom to $\mathbb{T}:=\mathbb{C}^{\times} \leadsto 0 \leftarrow \mathbb{T}^{n-d} \stackrel{B^{T}}{\leftarrow} \mathbb{T}^{n} \stackrel{A^{T}}{\leftarrow} \mathbb{T}^{d} \rightarrow 0$

$$
\nu_{A}:\left(T^{*} \mathbb{C}\right)^{n} \rightarrow\left(\mathfrak{t}^{d}\right)^{*}
$$

- $\mathbb{T}^{d} \subset \mathbb{T}^{n} C T^{*} \mathbb{C}^{n} ;$ moment map $\quad\left(x_{i} y_{i}\right)_{i} \downarrow \quad$ ॥l
- $Q_{A}^{\xi}:=\nu_{A}^{-1}(\xi) / / \mathbb{T}^{d}$ toric hyperkähler variety of $\operatorname{dim}=2(n-d)$
- $\mathbb{T}^{n-d} C Q_{A}^{\xi}$ with moment map $\nu: Q_{A}^{\xi} \rightarrow\left(t^{n-d}\right)^{*}$ whose discriminental locus is a hyperplane arrangement $\mathcal{H}_{A} \subset\left(\mathfrak{t}^{n-d}\right)^{*}$ modeled on $B^{T}=\left[b_{1}, \ldots, b_{n}\right] \in \mathbb{Z}^{n-d}$
- $H^{*}\left(Q_{A}^{\xi}\right)$ understood from the combinatorics of \mathcal{H}_{A} e.g. $\operatorname{dim} H^{*}\left(Q_{A}^{\xi}\right)=\#$ vertices of \mathcal{H}_{A}
- example: for any quiver Γ with n edges and $d+1$ vertices $\leadsto A_{\Gamma}\left(e_{i j}\right)=v_{i}-v_{j}$ a surjective matrix $A_{\Gamma} \in M_{d \times n}(\mathbb{Z})$ $\leadsto Q_{\Gamma}^{\xi}:=Q_{A_{\Gamma}}^{\xi}$ toric quiver variety
- Crawley-Boevey-Shaw (2006)
- $Z=\mathbb{C}^{2} \backslash\{x y-1=0\}$ with symplectic form $\Omega=\frac{d x \wedge d y}{x y-1}$ and usual \mathbb{T}-action is quasi-Hamiltonian with moment map

$$
\begin{array}{cccc}
\mu: & \rightarrow & \rightarrow & \mathbb{T} \\
& (x, y) & \mapsto & x y-1
\end{array}
$$

- $\mathbb{T}^{d} \subset \mathbb{T}^{n} \subset Z^{n}$ with moment map

$$
\begin{array}{cccc}
\mu_{A}: & Z^{n} & \rightarrow & \mathbb{T}^{d} \\
& \mu^{n} \downarrow & & \imath l^{\prime} \\
& \mathbb{T}^{n} & \xrightarrow{A} & \mathbb{T}^{d}
\end{array}
$$

- for generic $\zeta \in \mathbb{T}^{d}$ define $\mathcal{M}_{\mathrm{B}}^{\zeta}:=\mu_{A}^{-1}(\zeta) / / \mathbb{T}^{d}$ toric Betti space of $\operatorname{dim}=2(n-d)$ with symplectic form $\Omega \in \Omega^{2}\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)$ of Alexeev-Malkin-Meinrenken (1998)
- 「 quiver $\leadsto A=A_{\Gamma} \leadsto \mathcal{M}_{\mathrm{B}}^{\zeta}$ multiplicative quiver variety of Crawley-Boevey-Shaw (2006)

Special Lagrangian fibration on $\mathcal{M}_{\mathrm{B}}^{\zeta}$

- Auroux (2009): proper special Lagrangian fibration:
$\chi^{-1}(r, \lambda)=T_{r, \lambda} \cong\left\{\begin{array}{cc}\mathbb{T}_{\mathbb{R}}^{2} \cong U(1)^{2} & (r, \lambda) \neq(0,0) \\ \text { pinched torus } & (r, \lambda)=(0,0)\end{array}\right.$

$\bullet \sim \chi_{A}: \mathcal{M}_{\mathrm{B}}^{\zeta} \rightarrow\left(\mathbb{R}^{2}\right)^{n-d}$ proper special Lagrangian fibration; "toric Hitchin map in the Betti complex structure" degeneracy locus of χ_{A} is hyperplane arrangement \mathcal{H}_{A} in $\left(\mathbb{R}^{2}\right)^{n-d}$ modelled on vector configuration $\left[b_{1}, \ldots, b_{n}\right] \in \mathbb{Z}^{n-d}$
- $\zeta \in \mathbb{T}_{\mathbb{R}}^{d} \subset \mathbb{T}_{\mathbb{C}}^{d} \leadsto \mathcal{H}_{A}$ linear hyperplane arrangement $\leadsto \mathcal{C}_{A}^{\zeta}:=\chi_{A}^{-1}(0)$ toroidal core: non-normal compact toric variety over a toroidal hyperplane arrangement
- 「 quiver $\leadsto \mathcal{C}_{A_{\Gamma}}^{\zeta} \cong_{\text {diff }} \overline{J a c}_{\zeta}\left(C_{\Gamma}\right)$ compactified Jacobian of reducible nodal rational curve C_{Γ} of Oda-Seshadri (1979)

- e.g. $C_{\Gamma} \cong$

$$
\overline{J a c}_{\zeta}\left(C_{\Gamma}\right) \cong
$$

Theorem (Hausel-Proudfoot 2015)

$\zeta \in \mathbb{T}_{\mathbb{R}}^{d} \subset \mathbb{T}_{\mathbb{C}}^{d}$ generic $\leadsto \mathcal{C}_{A}^{\zeta} \subset \mathcal{M}_{\mathrm{B}}^{\zeta}$ is a homotopy equivalence

Theorem (Hausel-Proudfoot, 2015)

$H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)$ is Hodge-Tate and satisfies Curious Hard Lefschetz.

- sketch of proof:
- define $Z^{x}:=Z \backslash\{x=0\} \cong \mathbb{T}^{2}$ "toric cluster torus"
- $S \subset\{1, \ldots, n\} \leadsto\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)_{S}:=Z^{S} \times\left(Z^{x}\right)^{S^{c} / / /{ }_{\zeta}^{q H} \mathbb{T}^{d} \subset \mathcal{M}_{\mathrm{B}}^{\zeta}, ~}$
- $b_{S} \subset\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{Z}^{n-d}$ linearly independent \leadsto
$\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)_{S} \cong Z^{|S|} \times \mathbb{T}^{n-d-|S|}$ in particular satisfies HT and CHL
- $\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)_{S_{1}} \cap\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)_{S_{2}}=\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)_{S_{1} \cap S_{2}}$
- claim: $\mathcal{M}_{\mathrm{B}}^{\zeta}=\bigcup\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right)_{S}$ b_{s} lin. ind.
- result follows from Mayer-Vietoris

Theorem (Hausel-Proudfoot, 2015)

$$
W_{k} H^{k}\left(\mathcal{M}_{\mathrm{B}}^{e^{\xi}}\right) \cong H^{k}\left(Q_{A}^{\xi}\right)
$$

- proof: define $\tau_{R H}: \mathbb{C}^{2} \rightarrow Z$:

$$
\begin{array}{cc}
(x, y) \in \mathbb{C}^{2} \xrightarrow{\tau_{R H}}\left\{\begin{array}{cc}
\left(x, \frac{\exp (x y)+1}{x}\right) \in Z & x \neq 0 \\
(0, y) \in Z & x=0
\end{array}\right. \\
x y \downarrow & \downarrow x y-1
\end{array}
$$

$-\sim \tau_{R H}: Q_{A}^{\xi} \rightarrow \mathcal{M}_{\mathrm{B}}^{e^{\xi}}$
$\leadsto \tau_{R H}^{*}: W_{k} H^{k}\left(\mathcal{M}_{\mathrm{B}}^{\varepsilon^{\xi}}\right) \rightarrow H^{k}\left(Q_{A}^{\xi}\right)$ is surjective

- $\operatorname{dim}\left(W_{*} H^{*}\left(\mathcal{M}_{\mathrm{B}}^{e^{\xi}}\right)\right) \stackrel{C H L}{=} \operatorname{dim}\left(H^{\text {mid }}\left(\mathcal{M}_{\mathrm{B}}^{e^{\xi}}\right)\right)=\operatorname{dim}\left(H^{\text {top }}\left(\mathcal{C}_{A}^{e^{\xi}}\right)\right)$
$=\#$ top dim regions in toroidal hyperplane arrangement
$=\#$ vertices of hyperplane arrangement $=\operatorname{dim}\left(H^{*}\left(Q_{A}^{\xi}\right)\right) \square$

Comments on toric $P=W$

- recall $\chi: Z \rightarrow \mathbb{R}^{2}$
- $\chi^{-1}(\Delta) \cong_{\text {diff }} T$ where $T \rightarrow \Delta$ is the Tate curve
- \sim a neighbourhood of $\mathcal{C}_{A}^{\zeta} \subset \mathcal{M}_{\mathrm{B}}^{\zeta}$ is diffeomorphic to a local abelian fibration with central singular fiber the toroidal core $\mathcal{C}_{A}^{\zeta} \leadsto$ perverse filtration on $H^{*}\left(\mathcal{C}_{A}^{\zeta}\right)$

Conjecture (de Cataldo-Hausel-Migliorini, 2007)
$\zeta \in \mathbb{T}_{\mathbb{R}}^{d} \subset \mathbb{T}_{\mathbb{C}}^{d} \leadsto W_{2 k} H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\zeta}\right) \cong P_{k}\left(H^{*}\left(\mathcal{C}_{A}^{\zeta}\right)\right)$

- would follow from Mayer-Vietoris if we had
$\mathcal{C}_{A}^{\zeta}:=\chi_{A}^{-1}\left(\Delta_{b d}\right) \sim \mathcal{M}_{\mathrm{B}}^{\zeta}$ when $\zeta \in\left(\mathbb{R}^{\times}\right)^{d} \subset \mathbb{T}^{d}$
$\Delta_{b d} \subset \mathbb{R}^{n-d}$ bounded complex of the hyperplane arrangement

Problem

Can one cover the usual GL_{n}-character varieties \mathcal{M}_{B} with the (toric) character varieties corresponding to integral (nodal) spectral curves?

Semester organizers: T. Hausel (EPFL), R. Pandharipande (ETHZ),
A. Szenes (Université de Genève) and F. Rodriguez Villegas (ICTP)

Higgs bundles and Hitchin system
Organizers: O. Garcla-Prada, T. Hausel, A. Szenes
Workshop: 11-15 January
Arithmetic aspects of moduli spaces
Organizers: T. Hausel, E. Letellier, F. Rodriguez Villegas

- School: 25-29 January
- Workshop: 1-5 February

Global singularity theory and curves Organizers: R. Rimányli, A. Szenes
Workshop: May 9-13
Wall-crossing and quiver varieties
Organizers: T. Bridgeland, T. Hausel, B. Szendrö́

- School: 23-27 May

Sheaf enumeration and knot invariants
Organizers: D. Maulik, R. Pandharipande, V. Shende
School: 6-10 June
Curves on surfaces and 3 -folds
Organizers: J. Bryan, R. Pandharipande, R. Thomas

- Workshop: 20-24 June

More events, registration \& all info on cib.epfl.ch

