Wavelets, Shearlets and Geometric Frames: Part I

Philipp Grohs ${ }^{1}$ and Axel Obermeier²

October 20, 2014

[^0]
Course Syllabus

MON 20th century methods (PG)
TUE 21st century methods (PG)
WED Computer class (Axel Obermeier)

OUTLINE FOR TODAY

0. Motivation
1. Nonlinear Approximation
2. Wavelets and Point Singularities
3. Motivation

'Big Data'

 mit O1111010000 0 11110100000011110100000011110100000111101000000

Source: The Economist (2010)

The Big Challenge

Find efficient representations for complicated data

What are Good Data Representations

Data typically modeled as function $f: \Omega \rightarrow M$, given either explicitly or (more often) implicitly as $F(f)=0$ (operator equation or inverse problem).

What are Good Data Representations

Data typically modeled as function $f: \Omega \rightarrow M$, given either explicitly or (more often) implicitly as $F(f)=0$ (operator equation or inverse problem).

Aim to find 'dictionary' of atoms $\left\{\varphi_{i}\right\}_{i \in I}$ such that each signal f can be represented as a 'sparse' linear combination of atoms:

$$
f \sim \sum_{i \in J} c_{i} \varphi_{i}, \quad J \subset I, \# J=N, \text { where } N \text { is small. }
$$

What are Good Data Representations

Data typically modeled as function $f: \Omega \rightarrow M$, given either explicitly or (more often) implicitly as $F(f)=0$ (operator equation or inverse problem).

Aim to find 'dictionary' of atoms $\left\{\varphi_{i}\right\}_{i \in I}$ such that each signal f can be represented as a 'sparse' linear combination of atoms:

$$
f \sim \sum_{i \in J} c_{i} \varphi_{i}, \quad J \subset I, \# J=N, \text { where } N \text { is small. }
$$

If f is not given explicitly, a 'good' representation should (approximately) diagonalize F.

A prominent Example: JPEG 2000

Representation of image in wavelet domain

Information has its own architecture. Each data source, whether imagery, sound, text, has an inner architecture which we should attempt to discover and exploit for applications such as noise removal, signal recovery, data compression, and fast computation.
(D. Donoho, ICM Address, 2002)

Anisotropic Data (Explicit and implicit)

Images are anisotropic!

Solutions to transport equations ($v \cdot \nabla u+\kappa u=f$) are anisotropic!

Big goal: Find optimal approximation schemes for anisotropic data!

Big goal: Find optimal approximation schemes for anisotropic data!

But What does this mean??

1. What's the best we can do?

A Primer in nonlinear Approximation Theory

Start with a Mathematical Model

Start with a Mathematical Model

For instance...
Definition (Donoho (2001))
The set \mathcal{E} of cartoon images is given by

$$
\mathcal{E}:=\left\{f=f_{0}+\chi_{B} f_{1}\right\},
$$

where $f_{0}, f_{1} \in C^{2}\left([0,1]^{2}\right)$ and χ_{B} is the indicator function of $B \subset[0,1]^{2}$ with C^{2} boundary.

Measuring the Quality of a Dictionary

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'
- Let $\Phi:=\left\{\varphi_{i}\right\}_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a dictionary

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'
- Let $\Phi:=\left\{\varphi_{i}\right\}_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a dictionary
- Let $\Sigma_{N}(\Phi):=\left\{\sum_{i \in J} c_{i} \varphi_{i}: J \subset I, \# J=N\right\}$

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'
- Let $\Phi:=\left\{\varphi_{i}\right\}_{i \in l} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a dictionary
- Let $\Sigma_{N}(\Phi):=\left\{\sum_{i \in J} c_{i} \varphi_{i}: J \subset I, \# J=N\right\}$
- Let $\sigma_{N}(f, \Phi):=\inf _{g \in \Sigma_{N}}\|f-g\|_{2}$, the N-term approximation error

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'
- Let $\Phi:=\left\{\varphi_{i}\right\}_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a dictionary
- Let $\Sigma_{N}(\Phi):=\left\{\sum_{i \in J} c_{i} \varphi_{i}: J \subset I, \# J=N\right\}$
- Let $\sigma_{N}(f, \Phi):=\inf _{g \in \Sigma_{N}}\|f-g\|_{2}$, the N-term approximation error
- Let $\mathcal{A}^{s}(\Phi):=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right): \sigma_{N}(f, \Phi) \leq C N^{-s}\right\}$

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'
- Let $\Phi:=\left\{\varphi_{i}\right\}_{i \in 1} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a dictionary
- Let $\Sigma_{N}(\Phi):=\left\{\sum_{i \in J} c_{i} \varphi_{i}: J \subset I, \# J=N\right\}$
- Let $\sigma_{N}(f, \Phi):=\inf _{g \in \Sigma_{N}}\|f-g\|_{2}$, the N-term approximation error
- Let $\mathcal{A}^{s}(\Phi):=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right): \sigma_{N}(f, \Phi) \leq \mathrm{CN}^{-s}\right\}$
- Let $s^{*}(\mathcal{C}, \Phi):=\sup \left\{s>0: \mathcal{C} \subset \mathcal{A}^{s}\right\}$

Measuring the Quality of a Dictionary

- Let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ compact be a 'signal class'
- Let $\Phi:=\left\{\varphi_{i}\right\}_{i \in I} \subset L^{2}\left(\mathbb{R}^{d}\right)$ be a dictionary
- Let $\Sigma_{N}(\Phi):=\left\{\sum_{i \in J} c_{i} \varphi_{i}: J \subset I, \# J=N\right\}$
- Let $\sigma_{N}(f, \Phi):=\inf _{g \in \Sigma_{N}}\|f-g\|_{2}$, the N-term approximation error
- Let $\mathcal{A}^{s}(\Phi):=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right): \sigma_{N}(f, \Phi) \leq C N^{-s}\right\}$
- Let $s^{*}(\mathcal{C}, \Phi):=\sup \left\{s>0: \mathcal{C} \subset \mathcal{A}^{s}\right\}$

The bigger $s^{*}(\mathcal{C}, \Phi)$, the better the dictionary Φ is suitable for the approximation of the signal class \mathcal{C} !

A PERFECT DICTIONARY

A PERFECT DICTIONARY

- Let $\Phi \subset L^{2}\left(\mathbb{R}^{d}\right)$ be dense.

A PERFECT DICTIONARY

- Let $\Phi \subset L^{2}\left(\mathbb{R}^{d}\right)$ be dense.
- \cdot For every signal class \mathcal{C} we have $s^{*}(\mathcal{C}, \Phi)=\infty$ (in fact we would have $\sigma_{l}(f, \Phi)=0$ for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$.

A PERFECT DICTIONARY

- Let $\Phi \subset L^{2}\left(\mathbb{R}^{d}\right)$ be dense.
- $)^{-}$For every signal class \mathcal{C} we have $s^{*}(\mathcal{C}, \Phi)=\infty$ (in fact we would have $\sigma_{1}(f, \Phi)=0$ for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$.
- (2) No way of efficiently computing 1-term approximation of given f. No way of efficiently storing the dictionary Φ.

A PERFECT DICTIONARY

- Let $\Phi \subset L^{2}\left(\mathbb{R}^{d}\right)$ be dense.
- © For every signal class \mathcal{C} we have $s^{*}(\mathcal{C}, \Phi)=\infty$ (in fact we would have $\sigma_{1}(f, \Phi)=0$ for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$.
- © No way of efficiently computing l-term approximation of given f. No way of efficiently storing the dictionary Φ.
\leadsto need to specify the notion of 'allowed dictionaries'

Polynomial Depth Search

Allow only 'computable' N-term approximations: Identify I with \mathbb{N} and search best N-term approximation, satisfying

$$
f_{N}=\sum_{k=1}^{N} a_{\sigma(k, f)} \varphi_{\sigma(k, f)}
$$

where $\sigma(k, f) \leq \pi(k)$ for a polynomial π.

Polynomial Depth Search

Allow only `computable’ N-term approximations: Identify I with \mathbb{N} and search best N-term approximation, satisfying

$$
f_{N}=\sum_{k=1}^{N} a_{\sigma(k, f)} \varphi_{\sigma(k, f)},
$$

where $\sigma(k, f) \leq \pi(k)$ for a polynomial π.
Study $s_{\text {Poly }}^{*}(\mathcal{C}, \Phi)$, defined as $s^{*}(\mathcal{C}, \Phi)$ under the constraint that the N-term approximations are computed using polynomial depth search and define

$$
s^{*}(\Phi):=\sup \left\{s_{\text {Poly }}^{*}(\mathcal{C}, \Phi): \Phi \text { dictionary }\right\}
$$

and use this as benchmark for the complexity of signal class \mathcal{C}.

NOW WE KNOW WHAT ‘OPTIMAL’ MEANS...

DEFINITION
A dictionary Φ is optimal for a signal class \mathcal{C} if

$$
s^{*}(\mathcal{C}, \Phi)=s^{*}(\mathcal{C})
$$

NOW WE KNOW WHAT ‘OPTIMAL’ MEANS...

DEFinition

A dictionary Φ is optimal for a signal class \mathcal{C} if

$$
s^{*}(\mathcal{C}, \Phi)=s^{*}(\mathcal{C}) .
$$

...but how can we know $s^{*}(\mathcal{C})$?

Embedded Hypercubes

Definition (Donoho (2001))

1. A class of functions $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ contains an embedded orthogonal hypercube of dimension m and sidelength δ if there exist $f_{0} \in \mathcal{C}$ and orthogonal functions $\psi_{i} \in L^{2}\left(\mathbb{R}^{d}\right)$ for $i=1, \ldots, m$ with $\left\|\psi_{i}\right\|_{2}=\delta$ such that the collection of hypercube vertices

$$
\mathfrak{H}\left(m ; f_{0},\left(\psi_{i}\right)_{i}\right)=\left\{h=f_{0}+\sum_{i=1}^{m} \epsilon_{i} \psi_{i}: \epsilon_{i} \in\{0,1\}\right\}
$$

is contained in \mathcal{C}.

Embedded Hypercubes

Definition (Donoho (2001))

1. A class of functions $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ contains an embedded orthogonal hypercube of dimension m and sidelength δ if there exist $f_{0} \in \mathcal{C}$ and orthogonal functions $\psi_{i} \in L^{2}\left(\mathbb{R}^{d}\right)$ for $i=1, \ldots, m$ with $\left\|\psi_{i}\right\|_{2}=\delta$ such that the collection of hypercube vertices

$$
\mathfrak{H}\left(m ; f_{0},\left(\psi_{i}\right)_{i}\right)=\left\{h=f_{0}+\sum_{i=1}^{m} \epsilon_{i} \psi_{i}: \epsilon_{i} \in\{0,1\}\right\}
$$

is contained in \mathcal{C}.
2. A class of functions \mathcal{C} contains a copy of $\ell_{0}^{p}, p>0$, if there exists a sequence of orthogonal hypercubes $\left(\mathfrak{H}_{k}\right)_{k \in \mathbb{N}}$, embedded in \mathcal{C}, of dimensions m_{k} and side-lengths δ_{k}, such that $\delta_{k} \rightarrow 0$ and for $C>0$

$$
m_{k} \geq C \delta_{k}^{-p} \text { for all } k \in \mathbb{N}
$$

Theorem (Donoho (2001),
G-Keiper-Kutyniok-Schaefer (2014))
Suppose, that a class of functions $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ is uniformly L^{2}-bounded and contains a copy of ℓ_{0}^{p}. Then

$$
s^{*}(\mathcal{C}) \leq(2-p) / 2 p .
$$

Theorem (Donoho (2001),
G-Keiper-Kutyniok-Schaefer (2014))
Suppose, that a class of functions $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ is uniformly L^{2}-bounded and contains a copy of ℓ_{0}^{p}. Then

$$
s^{*}(\mathcal{C}) \leq(2-p) / 2 p .
$$

- proof

Theorem (G-Keiper-Kutyniok-Schaefer (2014))
Let $\mathcal{C}^{\alpha}=\left\{f \in \mathcal{C}^{\alpha}[0,1]^{d}:\|f\|_{C^{\alpha}} \leq 1\right\}$. Then \mathcal{C} contains a copy of ℓ_{0}^{p} with $p=\frac{2}{2 \alpha / d+1}$. Consequently

$$
s^{*}\left(\mathcal{C}^{\alpha}\right) \leq \alpha / d
$$

Theorem (Donoho (2001),
G-KEIPER-KUTYNIOK-SCHAEFER (2014))
Suppose, that a class of functions $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$ is uniformly L^{2}-bounded and contains a copy of ℓ_{0}^{p}. Then

$$
s^{*}(\mathcal{C}) \leq(2-p) / 2 p
$$

- proof

Theorem (G-Keiper-Kutyniok-Schaefer (2014))
Let $\mathcal{C}^{\alpha}=\left\{f \in \mathcal{C}^{\alpha}[0,1]^{d}:\|f\|_{C^{\alpha}} \leq 1\right\}$. Then \mathcal{C} contains a copy of ℓ_{0}^{D} with $p=\frac{2}{2 \alpha / d+1}$. Consequently

$$
s^{*}\left(\mathcal{C}^{\alpha}\right) \leq \alpha / d
$$

For instance, the best we can do for \mathcal{E} is an N-term approximation rate N^{-1}. We now know a benchmark result! Can we construct simple dictionaries which achieve this best-possible approximation rate??

FRAMES

We let Φ be a frame, i.e.,

$$
A\|f\|_{2}^{2} \leq \sum_{i \in 1}\left|\left\langle f, \varphi_{i}\right\rangle\right|^{2} \leq B\|f\|_{2}^{2}
$$

with dual $\tilde{\Phi}=\left\{\tilde{\varphi}_{i}\right\}_{i \in 1}$.

FRAMES

We let Φ be a frame, i.e.,

$$
A\|f\|_{2}^{2} \leq \sum_{i \in 1}\left|\left\langle f, \varphi_{i}\right\rangle\right|^{2} \leq B\|f\|_{2}^{2}
$$

with dual $\tilde{\Phi}=\left\{\tilde{\varphi}_{i}\right\}_{i \in 1}$.
Definition
For $\left(c_{i}\right)_{i \in \mathbb{N}}$, define its weak ℓ^{P}-norm by

$$
\left\|\left(c_{i}\right)_{i \in \mathbb{N}}\right\|_{\text {wep }}:=\inf \left\{C>0:\left|c_{n}^{*}\right| \leq C n^{-1 / p}\right\},
$$

where c_{n}^{*} is a nondecreasing rearrangement of c_{i}.

FRAMES

We let Φ be a frame, i.e.,

$$
A\|f\|_{2}^{2} \leq \sum_{i \in 1}\left|\left\langle f, \varphi_{i}\right\rangle\right|^{2} \leq B\|f\|_{2}^{2}
$$

with dual $\tilde{\Phi}=\left\{\tilde{\varphi}_{i}\right\}_{\in \mid}$.
Definition
For $\left(c_{i}\right)_{i \in \mathbb{N}}$, define its weak ℓ^{P}-norm by

$$
\left\|\left(c_{i}\right)_{i \in \mathbb{N}}\right\|_{\text {wep }}:=\inf \left\{C>0:\left|c_{n}^{*}\right| \leq C n^{-1 / p}\right\},
$$

where c_{n}^{*} is a nondecreasing rearrangement of c_{i}.
REmARK
We have $\left\|\left(c_{i}\right)\right\|_{\text {wep }} \leq\left\|\left(c_{i}\right)\right\|_{\ell \rho}$:

FRAMES

We let Φ be a frame, i.e.,

$$
A\|f\|_{2}^{2} \leq \sum_{i \in 1}\left|\left\langle f, \varphi_{i}\right\rangle\right|^{2} \leq B\|f\|_{2}^{2}
$$

with dual $\tilde{\Phi}=\left\{\tilde{\varphi}_{i}\right\}_{\in \mid}$.

Definition

For $\left(c_{i}\right)_{i \in \mathbb{N}}$, define its weak ℓ^{P}-norm by

$$
\left\|\left(c_{i}\right)_{i \in \mathbb{N}}\right\|_{w \ell^{p}}:=\inf \left\{C>0:\left|c_{n}^{*}\right| \leq C n^{-1 / p}\right\},
$$

where c_{n}^{*} is a nondecreasing rearrangement of c_{i}.
REMARK
We have $\left\|\left(c_{i}\right)\right\|_{\text {wep }} \leq\left\|\left(c_{i}\right)\right\|_{\ell^{\rho}}$:

$$
\sum_{i=0}^{\infty}\left|c_{i}\right|^{p}=\sum_{i=0}^{\infty}\left|c_{i}^{*}\right|^{p} \geq \sum_{i=0}^{n}\left|c_{i}^{*}\right|^{p} \geq n\left|c_{n}^{*}\right|^{p} .
$$

Nonlinear Approximation with Frames

Theorem
Let Φ be frame for L^{2}. Suppose that

$$
\left\|\left(\left\langle f, \tilde{\varphi}_{i}\right\rangle\right)_{i \in 1}\right\|_{w \ell \rho}<\infty .
$$

Then, with $s=1 / p-1 / 2$ we have

$$
f \in \mathcal{A}^{s}(\Phi)
$$

and

$$
\left\|f-\sum_{i \in l_{N}}\left\langle f, \tilde{\varphi}_{i}\right\rangle \varphi_{i}\right\|_{2} \lesssim N^{-s},
$$

where

$$
I_{N}=\{N \text { largest framecoefficients }\} .
$$

Nonlinear Approximation with Frames

Theorem

Let Φ be frame for L^{2}. Suppose that

$$
\left\|\left(\left\langle f, \tilde{\varphi}_{i}\right\rangle\right)_{i \in 1}\right\|_{w \ell \rho}<\infty .
$$

Then, with $s=1 / p-1 / 2$ we have

$$
f \in \mathcal{A}^{s}(\Phi)
$$

and

$$
\left\|f-\sum_{i \in I_{N}}\left\langle f, \tilde{\varphi}_{i}\right\rangle \varphi_{i}\right\|_{2} \lesssim N^{-s}
$$

where

$$
I_{N}=\{N \text { largest framecoefficients }\} .
$$

\leadsto coefficient sequeces in ℓ^{p} for small p leads to good compression! Compression works by simple coefficient thresholding!

Literature

- DeVore. Nonlinear Approximation. Acta Numerica 7, 51-150 (1998).
- Donoho. Sparse components of images and optimal atomic decompositions. Constructive Approximation 17/3, 353-382 (2001).
- Grohs, Keiper, Kutyniok and Schaefer. Cartoon Approximation with α-Curvelets. preprint (2014), available from www. math.ethz.ch/~pgrohs/research.
- Berger. Rate-Distortion Theory. Wiley (1971).

2. Wavelets and Point-Singularities

Wavelet Approximation of Point-Singularities

Signal class

$$
\mathcal{D}^{\alpha}=\left\{f \in L^{2}[0,1]: f=f_{1} \chi_{[0, a]}+\chi_{(a, 1]} f_{2},\left\|f_{i}\right\|_{c^{\alpha}} \leq 1, a \in[0,1]\right\} .
$$

Signal

Fourier Doesn’t Work

Fourier Doesn’t Work

Fourier Doesn’t Work

Fourier Doesn’t Work

Fourier Doesn’t Work

Fourier Approximation of Sawtooth Function

Fourier Doesn’t Work

Fourier Approximation of Sawtooth Function

THEOREM

We have

$$
s^{*}\left(\mathcal{D}^{\alpha}, \text { Fourier }\right)=\frac{1}{2} .
$$

Wavelets

Dictionaries of the form

$$
\mathcal{W}(\varphi, \psi, \alpha):=\{\underbrace{\varphi(\cdot-\alpha k)}_{\varphi_{k}}: k \in \mathbb{Z}\} \cup\{\underbrace{2^{j / 2} \psi\left(2^{j} \cdot-\alpha k\right)}_{\psi_{j, k}}: j \in \mathbb{N}, k \in \mathbb{Z}
$$

Example
Haar wavelets with $\varphi=\chi_{0,1}$ and $\psi=\frac{1}{\sqrt{2}}(\varphi(2 \cdot)-\varphi(2 \cdot-1))$. $\mathcal{W}(\varphi, \psi, 1)$ constitutes an ONB for L^{2}. Smooth Wavelet ONBs with compactly supported $\varphi, \psi \leadsto$ Daubechies wavelets.

Signal ($\mathrm{N}=1024$)

Non-Linear wavelet approximation using $\mathrm{M}=64$ coefficients

Meyer Wavelets

Left to right: Meyer Wavelet ψ, Fourier Trafo of Meyer Wavelet, Fourier Trafo of Meyer Scalingfunction φ.

Meyer Wavelets

Left to right: Meyer Wavelet ψ, Fourier Trafo of Meyer Wavelet, Fourier Trafo of Meyer Scalingfunction φ.

$$
\hat{\psi}_{j, k}(\xi)=2^{-j / 2} \hat{\psi}\left(2^{-j} \xi\right) \exp \left(2 \pi i 2^{-j} k \xi\right)
$$

It follows that

$$
\operatorname{supp} \psi_{j, k} \sim 2^{-j}[k-a, k+a], \quad \text { supp } \hat{\psi}_{j, k} \sim\left[2^{j-1}, 2^{j+1}\right]
$$

and thus $\left\langle f, \psi_{j, k}\right\rangle$ extracts frequency information in an annulus around 2^{j} and spacial information in an interval of width 2^{-j} around $2^{-j} k$.

Wavelets are Optimal for Point-Singularities

THEOREM

Suppose that Φ is the ONB of Meyer Wavelets. Then

$$
\sup _{f \in \mathcal{D}^{\alpha}}\left\|\left(\left\langle f, \psi_{j, k}\right)_{j, k}\right\rangle\right\|_{w \ell^{2 /(1+\alpha)}}<\infty
$$

In particular,

$$
s^{*}\left(\mathcal{W}(\varphi, \psi, 1), \mathcal{C}^{\alpha}\right)=s^{*}\left(\mathcal{C}^{\alpha}\right)=\alpha
$$

In other words, wavelets provide optimal approximation for functions with point-singularities, namely as efficient as if the singularity wasn't there! cproot

Detour: Wavelets for Manifold-Valued
 DATA
 Many data types possess additional structure!

Detour: Wavelets for Manifold-Valued
 DATA

Nonlinear wavelet-type transforms can also be defined for manifold-valued data. Wavelet coefficients are elements of the tangent bundle (UrRahmen et. al., G-Wallner).

Detour: Wavelets for Manifold-Valued
 DATA

Nonlinear wavelet-type transforms can also be defined for manifold-valued data. Wavelet coefficients are elements of the tangent bundle (UrRahmen et. al., G-Wallner).

Detour: Wavelets for Manifold-Valued DATA

Theorem (G 2012)
'Manifold-valued wavelets' are optimal for functions with point-singularities.

Detour: Wavelets for Manifold-Valued DATA

Theorem (G 2012)
'Manifold-valued wavelets' are optimal for functions with point-singularities.
Proof complicated due to loss of linear structure.

Detour: Wavelets for Manifold-Valued DATA

Left: Original entries of top 3 matrix entries of SO(3)-valued data, Right: 20:1 compression

2-D Wavelets

Dictionaries of the form

where

$$
\psi^{(1,1)}(x, y)=\psi(x) \psi(y), \psi^{(1,0)}(x, y)=\psi(x) \varphi(y), \psi^{(0,1)}(x, y)=\psi(y) \varphi(x), \varphi^{2 D}(x, y)=\varphi(x) \varphi(y)
$$

with ψ wavelet and φ scaling function.

Theorem

Suppose $\mathcal{W}(\varphi, \psi, \alpha)$ is ONB or frame for $L^{2}(\mathbb{R})$. Then $\mathcal{W}^{2 D}(\varphi, \psi, \alpha)$ is ONB or frame for $L^{2}\left(\mathbb{R}^{2}\right)$.

Fourier Partitioning of 2D Meyer Wavelets

JPEG2000

The image compression standard JPEG2000 is based on

JPEG2000

The image compression standard JPEG2000 is based on

1. Decomposing a given image f in a wavelet $2 D$ wavelet basis,

JPEG2000

The image compression standard JPEG2000 is based on

1. Decomposing a given image f in a wavelet $2 D$ wavelet basis,
2. Coefficient thesholding,

JPEG2000

The image compression standard JPEG2000 is based on

1. Decomposing a given image f in a wavelet $2 D$ wavelet basis,
2. Coefficient thesholding,
3. Quantization.

Recall...

Recall...

Is this really optimal??

RECALL...

Definition (Donoho (2001))
The set \mathcal{E} of cartoon images is given by

$$
\mathcal{E}:=\left\{f=f_{0}+\chi_{B} f_{1}\right\},
$$

where $f_{0}, f_{1} \in C^{2}\left([0,1]^{2}\right)$ and χ_{B} is the indicator function of $B \subset[0,1]^{2}$ with C^{2} boundary.

RECALL...

Definition (Donoho (2001))
The set \mathcal{E} of cartoon images is given by

$$
\mathcal{E}:=\left\{f=f_{0}+\chi_{B} f_{1}\right\},
$$

where $f_{0}, f_{1} \in C^{2}\left([0,1]^{2}\right)$ and χ_{B} is the indicator function of $B \subset[0,1]^{2}$ with C^{2} boundary.

Recall benchmark approximation rate for \mathcal{E} is N^{-1} !

Limitations of Wavelets

Theorem

We have that

$$
s^{*}\left(\mathcal{E}, \mathcal{W}^{2 D}(\varphi, \psi, \alpha)\right)=\frac{1}{2} .
$$

This is one magnitude short of the optimal rate N^{-1}.

- proof

Limitations of Wavelets

Theorem

We have that

$$
s^{*}\left(\mathcal{E}, \mathcal{W}^{2 D}(\varphi, \psi, \alpha)\right)=\frac{1}{2}
$$

This is one magnitude short of the optimal rate N^{-1}.

- proof

Can we find better dictionaries??

Literature

- Daubechies. Ten Lectures on Wavelets. SIAM (1992)
- Mallat. A Wavelet Tour of Signal Processing. Academic Press (2008).

End of Part I

Appendix: Proofs and Additional Material

Proof Sketch: Suppose that \mathfrak{h} is a hypercube of dimension m and sidelength δ.
Every element $h \in \mathfrak{h}$ can be encoded with m bits.
Let $h \in \mathfrak{h}$ arbitrary and \tilde{h}_{N} its best N-term approximation.
Assume for simplicity that \tilde{h}_{N} can be encoded with N bits (up to a log-factor this is possible by the polynomial depth search assumption).
Let \hat{h}_{N} be the orthogonal projection of \tilde{h}_{N} onto \mathfrak{H}.
Then we get the following coding scheme for $\{0,1\}^{m}$, i.e.
a mapping Code ${ }_{m}^{N}$ from $\{0,1\}^{m}$ to $\{0,1\}^{N}$:

$$
\left(\epsilon_{i}\right)_{i=1}^{m} \mapsto h=f_{0}+\sum_{i=1}^{m} \epsilon_{i} \psi_{i} \in \mathfrak{h} \underbrace{\mapsto}_{N \text {-term approximation }}\left(\tau_{i}\right)_{i=1}^{N},
$$

and corresponding decoding map
$\operatorname{Decode}_{m}^{N}\{0,1\}^{N} \rightarrow\{0,1\}^{m}$

$$
\left(\tau_{i}\right)_{i=1}^{N} \underbrace{\stackrel{\leftrightarrow}{n}}_{N \text {-term reconstruction }} \tilde{h}_{N} \underbrace{\stackrel{\leftrightarrow}{n}}_{\text {projection on } \eta^{-}} \hat{h}_{N} .
$$

Result from Rate-Distortion-Theory: For $N<m / 3$ we have at least one bad $\left(\epsilon_{i}\right)_{i=1}^{m}$ (corresponding to $h \in \mathfrak{h}$) such that at least order m bits in the reconstruction are false:
dist $_{\text {Hamming }}\left(\left(\epsilon_{i}\right)_{i=1}^{m}\right.$, Decode $\left._{m}^{N} \circ \operatorname{Encode~}_{m}^{N}\left(\epsilon_{i}\right)_{i=1}^{m}\right) \gtrsim m$.
But this implies that

$$
\left\|h-\tilde{h}_{N}\right\|_{2}^{2} \geq\left\|h-\hat{h}_{N}\right\|_{2}^{2} \gtrsim \delta^{2} m
$$

Let now $N_{k}:=m_{k} / 3$, where m_{k} is the dimension of our sequence of embedded hypercubes of sidelengths

$$
\delta_{k} \gtrsim m_{k}^{-1 / p} \gtrsim N_{k}^{-1 / p}
$$

Putting this into the above equation we get

$$
\left\|h-\tilde{h}_{N_{k}}\right\|_{2}^{2} \gtrsim N_{k}^{1-2 / p} .
$$

Proof Sketch: Only $d=1$ (generalization is easy).
We need to construct a family of embedded hypercubes
(\mathfrak{h}_{k} of dimensions m_{k} and sidelengths δ_{k}, where

$$
m_{k} \gtrsim \delta_{k}^{-p}, \quad p=\frac{2}{2 \alpha+1} .
$$

Start with $\psi \in \mathcal{C}^{\alpha}$ and

$$
\psi_{i, k}:=k^{-\alpha} \psi(k \cdot-i), \quad i, k \in \mathbb{N} .
$$

We have

$$
\left\|\psi_{i, k}\right\|_{C^{\alpha}} \leq\|\psi\|_{C^{\alpha}},
$$

so $\psi_{i, k} \in \mathcal{C}^{\alpha}$.
Furthermore, the supports of different $\psi_{i, k}, \psi_{i, k}$ are different, so for a fixed k, the system $\left(\psi_{i, k}\right)_{i}$ is orthogonal. A simple computation shows that

$$
\left\|\psi_{i, k}\right\|_{2}^{2}=k^{-1-2 \alpha}\|\psi\|_{2}^{2}
$$

So the system

$$
\mathfrak{h}_{k}=\left\{\sum_{i=1}^{k} \epsilon_{i} \psi_{i, k}\right\}
$$

is an embedded hypercube of dimension $m_{k}=k$ with sidelength $\delta_{k} \sim k^{-\left(\frac{1}{2}+\alpha\right)}$. ceiun to talk

Proof Sketch: Suppose for simplicity that Φ is an ONB (general case not more difficult). Let $c_{i}=\left\langle f, \varphi_{i}\right\rangle$ and assume that

$$
\left\|\left(c_{i}\right)_{i}\right\|_{w e p}<\infty .
$$

Let $\left(c_{i j}\right)_{j \in \mathbb{N}}$ be a nonincreasing rearrangement of $\left(c_{i}\right)_{i}$. The best N-term approximation of f is given by

$$
f_{N}=\sum_{j=1}^{N} c_{j i} \varphi_{j} .
$$

We need to show that

$$
\left\|f-f_{N}\right\|_{2} \lesssim N^{-(1 / p-1 / 2)} .
$$

Since Φ is an ONB we have

$$
\left\|f-f_{N}\right\|_{2}=\left(\sum_{j=N+1}^{\infty} c_{i j}^{2}\right)^{1 / 2} .
$$

Since $\left\|\left(c_{i}\right)_{i}\right\|_{\text {wep }}<\infty$ we have that

$$
\left(\sum_{j=N+1}^{\infty} j^{-2 / p}\right)^{1 / 2}=N^{-1 / p+1 / 2}\left(N^{2 / p-1} \sum_{j=N+1}^{\infty} j^{-2 / p}\right)^{1 / 2} .
$$

So we need to show that

$$
\left(N^{2 / p-1} \sum_{j=N+1}^{\infty} j^{-2 / p}\right)^{1 / 2}<\infty
$$

Suppose for simplicity that $N=2^{\prime}$. Then

$$
\sum_{j=N+1}^{\infty} j^{-2 / p} \leq \sum_{m=1}^{\infty} F_{m}
$$

where

$$
F_{m}:=\sum_{i=2^{m-1}}^{2^{m}} i^{-2 / p} \lesssim \sum_{i=2^{m-1}}^{2^{m}} 2^{-2 m / p} \lesssim 2^{-(2 / p-1) m}
$$

So

$$
\sum_{m=1}^{\infty} F_{m} \lesssim 2^{-(2 / p-1)!}
$$

This implies the desired estimate. ©retun to talk

Proof: Let $f(x)=x, x \in[0,1]$. Then

$$
\begin{aligned}
\hat{f}(j)=\int_{0}^{1} x \exp (-2 \pi i j x) & d x=\left[x \frac{-1}{2 \pi i j} \exp (-2 \pi i j x)\right]_{0}^{1} \\
& +\int_{0}^{1} \frac{1}{2 \pi i j} \exp (-2 \pi i j x) d x=-\frac{1}{2 \pi i j}
\end{aligned}
$$

So the nonincreasing rearrangement of $c_{j}:=\langle f, \exp (2 \pi i j \cdot)\rangle$ is of the form $c_{n}^{*} \sim n^{-1}$ which lies in $w \ell^{p}$ for $p \geq 1$, which corresponds to a best N-term approximation order $\frac{1}{2}$.

Proof Sketch: We will show that for any $f \in \mathcal{D}^{\alpha}$ we have for every $p>\frac{1}{\alpha+1 / 2}$ that the coefficient sequence $\left\langle f, \psi_{j, k}\right\rangle$ lies in ℓ^{p}. This is almost the result we want.
We suppose that $\frac{d^{\prime}}{d t} \hat{\psi}(0)=0$ for all $I=1, \ldots,\lfloor\alpha\rfloor$, which is definitely the case for Meyer wavelets and which is equivalent to

$$
\begin{equation*}
\int p(x) \psi(x) d x=0 \quad \text { for all polynomials } p \text { of degree } \leq\lfloor\alpha\rfloor . \tag{1}
\end{equation*}
$$

Furthermore we suppose that

$$
\begin{equation*}
\operatorname{supp} \psi_{j, l} \subset 2^{-j}[k-a, k+a] \tag{2}
\end{equation*}
$$

for some fixed $a>0$.
Now fix a scale j. For any bounded f we have the estimate

$$
\begin{equation*}
\int f(x) \psi_{j, k}(x) d x=\int_{2^{-j}[k-a, k+a]} f(x) 2^{j / 2} \psi\left(2^{j} x-k\right) d x \lesssim 2^{-j / 2} \tag{3}
\end{equation*}
$$

For $f \in C^{\alpha}$ we have with a Taylor polynomial $p_{j, k}(x)$ of f around $2^{-j} k$ that

$$
\int f(x) \psi_{j, k}(x) d x=\int_{2^{-j}[k-a, k+a]}\left(p_{j, k}(x)+O\left(2^{-\alpha j}\right)\right) 2^{j / 2} \psi\left(2^{j} x-k\right) d x .
$$

Using the vanishing-moment-property (1) and the substitution $y=2^{j} x$, we get that

$$
\begin{equation*}
\int f(x) \psi_{j, k}(x) d x \lesssim 2^{-(\alpha+1 / 2) j} \tag{4}
\end{equation*}
$$

for all $f \in C^{\alpha}$.
Let us split the index set \mathbb{Z} into

$$
K_{1}=\left\{k \in \mathbb{Z}: \text { supp } \psi_{j, k} \text { intersects the singularity }\right\}
$$

and
$K_{1}=\left\{k \in \mathbb{Z}:\right.$ supp $\psi_{j, k}$ intersects the $[0,1]$ and not the singularity
By (2) we get that

$$
\begin{equation*}
\# K_{1} \lesssim 1 \text { and } \# K_{2} \lesssim 2^{j} . \tag{5}
\end{equation*}
$$

For $k \in K_{7}$ the wavelet coefficients $c_{j, k}:=\left\langle f, \psi_{j}, k\right\rangle$ satisfy $\left|c_{j, k}\right| \lesssim 2^{-j / 2}$ by (3) and for $k \in K_{2}$ we have, by (4), that $\left|c_{j, k}\right| \lesssim 2^{-j(\alpha+1 / 2)}$.
Hence we get that
$\sum_{k}\left|c_{j, k}\right|^{p} \lesssim \sum_{K_{1}} 2^{-p j / 2}+\sum_{K_{1}} 2^{-p j(\alpha+1 / 2)} \lesssim 2^{-p j / 2}+2^{-j(p \alpha+p / 2-1)}$,
by (5). Now suppose that $p>\frac{1}{\alpha+1 / 2}$. Then $\tau:=\min (p / 2, p \alpha+p / 2-1)>0$ and

$$
\sum_{j} \sum_{k}\left|c_{j, k}\right|^{D} \lesssim \sum_{j} 2^{-\tau j}<\infty
$$

Proof Sketch: Fix a scale j. Every wavelet $\psi_{j, k}^{\varepsilon}$ is approximately supported in a square of sidelength $\sim 2^{-j}$. We need approximately 2^{j} wavelets to cover the singularity curve.
For those 2^{j} wavelets the corresponding coefficients
$C_{j, l}^{\varepsilon}:=\left\langle f, \psi_{j, l}^{\varepsilon}\right\rangle$ satisfy

$$
\left|c_{j, l}^{\varepsilon}\right| \geq 2^{-j}
$$

So at each scale we have $\sim 2^{j}$ coefficients of magnitude 2^{-j}.
Therefore we have

$$
\sum_{\varepsilon, k}\left|c_{j, 1}^{\varepsilon}\right|^{p} \geq \sum_{\varepsilon, k} 2^{-p j} \geq 2^{(1-p) j} .
$$

So the wavelet coefficients can only lie in ℓ^{p} if $p>1$, which implies best N-term rate of order $1 / 2$.

[^0]: ${ }^{1}$ ETH Zürich
 ${ }^{2}$ ETH Zürich, supported by SNF grant 146356

