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0. Motivation



‘BIG DATA’

Source: The Economist (2010)



THE BIG CHALLENGE

Find efficient representations for complicated data



WHAT ARE GOOD DATA REPRESENTATIONS

Data typically modeled as function f : Ω → M, given
either explicitly or (more often) implicitly as F(f ) = 0
(operator equation or inverse problem).

Aim to find ‘dictionary’ of atoms {ϕi}i∈I such that each
signal f can be represented as a ‘sparse’ linear
combination of atoms:

f ∼
�

i∈J

ciϕi , J ⊂ I, #J = N, where N is small.

If f is not given explicitly, a ‘good’ representation should
(approximately) diagonalize F .
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A PROMINENT EXAMPLE: JPEG 2000
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Representation of image in wavelet domain



Information has its own
architecture. Each data source,

whether imagery, sound, text, has
an inner architecture which we
should attempt to discover and
exploit for applications such as
noise removal, signal recovery,

data compression, and fast
computation.

(D. Donoho, ICM Address, 2002)



ANISOTROPIC DATA (EXPLICIT AND IMPLICIT)

Images are anisotropic!

Solutions to transport equations (v ·∇u + κu = f ) are
anisotropic!



Big goal: Find optimal approximation schemes for
anisotropic data!

But What does this mean??
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1. What’s the best we can do?
A Primer in nonlinear Approximation Theory



START WITH A MATHEMATICAL MODEL

For instance...
DEFINITION (DONOHO (2001))
The set E of cartoon images is given by

E := {f = f0 + χBf1} ,

where f0, f1 ∈ C2([0, 1]2) and χB is the indicator function of
B ⊂ [0, 1]2 with C2 boundary.
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MEASURING THE QUALITY OF A DICTIONARY

� Let C ⊂ L2(Rd) compact be a ‘signal class’
� Let Φ := {ϕi}i∈I ⊂ L2(Rd) be a dictionary
� Let ΣN(Φ) :=

��
i∈J ciϕi : J ⊂ I, #J = N

�

� Let σN(f ,Φ) := infg∈ΣN �f − g�2, the N-term
approximation error

� Let As(Φ) :=
�

f ∈ L2(Rd) : σN(f ,Φ) ≤ CN−s�

� Let s∗(C,Φ) := sup {s > 0 : C ⊂ As}

The bigger s∗(C,Φ), the better the dictionary Φ is suitable
for the approximation of the signal class C!
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A PERFECT DICTIONARY

� Let Φ ⊂ L2(Rd) be dense.
� � For every signal class C we have s∗(C,Φ) = ∞ (in fact

we would have σ1(f ,Φ) = 0 for all f ∈ L2(Rd).
� � No way of efficiently computing 1-term

approximation of given f . No way of efficiently storing
the dictionary Φ.

❀ need to specify the notion of ‘allowed dictionaries’



A PERFECT DICTIONARY

� Let Φ ⊂ L2(Rd) be dense.

� � For every signal class C we have s∗(C,Φ) = ∞ (in fact
we would have σ1(f ,Φ) = 0 for all f ∈ L2(Rd).

� � No way of efficiently computing 1-term
approximation of given f . No way of efficiently storing
the dictionary Φ.

❀ need to specify the notion of ‘allowed dictionaries’



A PERFECT DICTIONARY

� Let Φ ⊂ L2(Rd) be dense.
� � For every signal class C we have s∗(C,Φ) = ∞ (in fact

we would have σ1(f ,Φ) = 0 for all f ∈ L2(Rd).

� � No way of efficiently computing 1-term
approximation of given f . No way of efficiently storing
the dictionary Φ.

❀ need to specify the notion of ‘allowed dictionaries’



A PERFECT DICTIONARY

� Let Φ ⊂ L2(Rd) be dense.
� � For every signal class C we have s∗(C,Φ) = ∞ (in fact

we would have σ1(f ,Φ) = 0 for all f ∈ L2(Rd).
� � No way of efficiently computing 1-term

approximation of given f . No way of efficiently storing
the dictionary Φ.

❀ need to specify the notion of ‘allowed dictionaries’



A PERFECT DICTIONARY

� Let Φ ⊂ L2(Rd) be dense.
� � For every signal class C we have s∗(C,Φ) = ∞ (in fact

we would have σ1(f ,Φ) = 0 for all f ∈ L2(Rd).
� � No way of efficiently computing 1-term

approximation of given f . No way of efficiently storing
the dictionary Φ.

❀ need to specify the notion of ‘allowed dictionaries’



POLYNOMIAL DEPTH SEARCH

Allow only ‘computable’ N-term approximations: Identify I
with N and search best N-term approximation, satisfying

fN =
N�

k=1

aσ(k,f )ϕσ(k,f ),

where σ(k , f ) ≤ π(k) for a polynomial π.

Study s∗Poly(C,Φ), defined as s∗(C,Φ) under the constraint
that the N-term approximations are computed using
polynomial depth search and define

s∗(Φ) := sup
�

s∗Poly(C,Φ) : Φ dictionary
�

and use this as benchmark for the complexity of signal
class C.
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NOW WE KNOW WHAT ‘OPTIMAL’ MEANS...

DEFINITION
A dictionary Φ is optimal for a signal class C if

s∗(C,Φ) = s∗(C).

...but how can we know s∗(C)?
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EMBEDDED HYPERCUBES

DEFINITION (DONOHO (2001))

1. A class of functions C ⊂ L2(Rd) contains an
embedded orthogonal hypercube of dimension m
and sidelength δ if there exist f0 ∈ C and orthogonal
functions ψi ∈ L2(Rd) for i = 1, ...,m with �ψi�2 = δ such
that the collection of hypercube vertices

H(m; f0, (ψi)i) = {h = f0 +
m�

i=1

�iψi : �i ∈ {0, 1}}

is contained in C.

2. A class of functions C contains a copy of �p
0 , p > 0, if

there exists a sequence of orthogonal hypercubes
(Hk)k∈N, embedded in C, of dimensions mk and
side-lengths δk , such that δk → 0 and for C > 0

mk ≥ Cδ−p
k for all k ∈ N.
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THEOREM (DONOHO (2001),
G-KEIPER-KUTYNIOK-SCHAEFER (2014))
Suppose, that a class of functions C ⊂ L2(Rd) is uniformly
L2-bounded and contains a copy of �p

0 . Then

s∗(C) ≤ (2 − p)/2p.

proof

THEOREM (G-KEIPER-KUTYNIOK-SCHAEFER (2014))
Let Cα = {f ∈ Cα[0, 1]d : �f�Cα ≤ 1}. Then C contains a
copy of �p

0 with p = 2
2α/d+1 . Consequently

s∗(Cα) ≤ α/d.

proof

For instance, the best we can do for E is an N-term
approximation rate N−1. We now know a benchmark
result! Can we construct simple dictionaries which
achieve this best-possible approximation rate??
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FRAMES
We let Φ be a frame, i.e.,

A�f�2
2 ≤

�

i∈I

|�f ,ϕi�|2 ≤ B�f�2
2

with dual Φ̃ = {ϕ̃i}i∈I .

DEFINITION
For (ci)i∈N, define its weak �p-norm by

�(ci)i∈N�w�p := inf{C > 0 : |c∗
n| ≤ Cn−1/p},

where c∗
n is a nondecreasing rearrangement of ci .

REMARK
We have �(ci)�w�p ≤ �(ci)��p :

∞�

i=0

|ci |p =
∞�

i=0

|c∗
i |

p ≥
n�

i=0

|c∗
i |

p ≥ n|c∗
n|p.
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NONLINEAR APPROXIMATION WITH FRAMES

THEOREM
Let Φ be frame for L2. Suppose that

��(�f , ϕ̃i�)i∈I
��

w�p < ∞.

Then, with s = 1/p − 1/2 we have

f ∈ As(Φ)

and
�f −

�

i∈IN

�f , ϕ̃i�ϕi�2 � N−s,

where
IN = {N largest framecoefficients}.

proof

❀ coefficient sequeces in �p for small p leads to good
compression! Compression works by simple coefficient
thresholding!
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2. Wavelets and
Point-Singularities



WAVELET APPROXIMATION OF
POINT-SINGULARITIES

Signal class

Dα = {f ∈ L2[0, 1] : f = f1χ[0,a]+χ(a,1]f2, �fi�Cα ≤ 1, a ∈ [0, 1]}.
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FOURIER DOESN’T WORK
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WAVELETS

Dictionaries of the form

W(ϕ,ψ,α) :=





ϕ(·− αk)� �� �

ϕk

: k ∈ Z





∪





2j/2ψ(2j ·−αk)� �� �

ψj,k

: j ∈ N, k ∈ Z





.

EXAMPLE
Haar wavelets with ϕ = χ0,1 and ψ = 1√

2
(ϕ(2·)− ϕ(2 ·−1)).

W(ϕ,ψ, 1) constitutes an ONB for L2. Smooth Wavelet ONBs
with compactly supported ϕ, ψ ❀ Daubechies wavelets.







MEYER WAVELETS

Left to right: Meyer Wavelet ψ, Fourier Trafo of Meyer
Wavelet, Fourier Trafo of Meyer Scalingfunction ϕ.

ψ̂j,k(ξ) = 2−j/2ψ̂(2−jξ)exp(2πi2−j kξ).

It follows that

supp ψj,k ∼ 2−j [k − a, k + a], supp ψ̂j,k ∼ [2j−1, 2j+1],

and thus �f ,ψj,k� extracts frequency information in an
annulus around 2j and spacial information in an interval of
width 2−j around 2−j k .
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WAVELETS ARE OPTIMAL FOR
POINT-SINGULARITIES

THEOREM
Suppose that Φ is the ONB of Meyer Wavelets. Then

sup
f∈Dα

�(�f ,ψj,k)j,k��w�2/(1+α) < ∞.

In particular,

s∗(W(ϕ,ψ, 1), Cα) = s∗(Cα) = α.

In other words, wavelets provide optimal approximation
for functions with point-singularities, namely as efficient as
if the singularity wasn’t there! proof



DETOUR: WAVELETS FOR MANIFOLD-VALUED
DATA

Many data types possess additional structure!
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DETOUR: WAVELETS FOR MANIFOLD-VALUED
DATA

Left: Original entries of top 3 matrix entries of
SO(3)-valued data, Right: 20:1 compression



2-D WAVELETS

Dictionaries of the form

W2D(ϕ,ψ,α) :=






ϕ2D(· − αk)
� �� �

ϕ2D
k

: k ∈ Z2






∪






2jψε(2j · −αk)
� �� �

ψε
j,k

: j ∈ N, k ∈ Z2, ε ∈ {0, 1}2 \ (0, 0)






,

where

ψ(1,1)(x, y) = ψ(x)ψ(y), ψ(1,0)(x, y) = ψ(x)ϕ(y), ψ(0,1)(x, y) = ψ(y)ϕ(x), ϕ2D(x, y) = ϕ(x)ϕ(y),

with ψ wavelet and ϕ scaling function.

THEOREM
Suppose W(ϕ,ψ,α) is ONB or frame for L2(R). Then
W2D(ϕ,ψ,α) is ONB or frame for L2(R2).



FOURIER PARTITIONING OF 2D MEYER WAVELETS

supp ψ̂
(1,0)
2,ksupp ψ̂

(1,0)
2,k

supp ψ̂
(0,1)
2,k

supp ψ̂
(0,1)
2,k



JPEG2000

The image compression standard JPEG2000 is based on

1. Decomposing a given image f in a wavelet 2D
wavelet basis,

2. Coefficient thesholding,
3. Quantization.



JPEG2000

The image compression standard JPEG2000 is based on
1. Decomposing a given image f in a wavelet 2D

wavelet basis,

2. Coefficient thesholding,
3. Quantization.



JPEG2000

The image compression standard JPEG2000 is based on
1. Decomposing a given image f in a wavelet 2D

wavelet basis,
2. Coefficient thesholding,

3. Quantization.



JPEG2000

The image compression standard JPEG2000 is based on
1. Decomposing a given image f in a wavelet 2D

wavelet basis,
2. Coefficient thesholding,
3. Quantization.



RECALL...

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Is this really optimal??



RECALL...

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Is this really optimal??



RECALL...

DEFINITION (DONOHO (2001))
The set E of cartoon images is given by

E := {f = f0 + χBf1} ,

where f0, f1 ∈ C2([0, 1]2) and χB is the indicator function of
B ⊂ [0, 1]2 with C2 boundary.

Recall benchmark approximation rate for E is N−1!
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LIMITATIONS OF WAVELETS

THEOREM
We have that

s∗
�
E ,W2D(ϕ,ψ,α)

�
=

1
2
.

This is one magnitude short of the optimal rate N−1.
proof

Can we find better dictionaries??
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End of Part I



Appendix: Proofs and
Additional Material



Proof Sketch: Suppose that h is a hypercube of dimension
m and sidelength δ.
Every element h ∈ h can be encoded with m bits.
Let h ∈ h arbitrary and h̃N its best N-term approximation.
Assume for simplicity that h̃N can be encoded with N bits
(up to a log-factor this is possible by the polynomial depth
search assumption).
Let ĥN be the orthogonal projection of h̃N onto H.
Then we get the following coding scheme for {0, 1}m, i.e.
a mapping CodeN

m from {0, 1}m to {0, 1}N :

(�i)
m
i=1 �→ h = f0 +

m�

i=1

�iψi ∈ h �→����
N-term approximation

(τi)
N
i=1,

and corresponding decoding map
DecodeN

m{0, 1}N → {0, 1}m

(τi)
N
i=1 �→����

N-term reconstruction
h̃N �→����

projection on h

ĥN .



Result from Rate-Distortion-Theory: For N < m/3 we have
at least one bad (�i)

m
i=1 (corresponding to h ∈ h) such that

at least order m bits in the reconstruction are false:

distHamming((�i)
m
i=1,DecodeN

m ◦ EncodeN
m(�i)

m
i=1) � m.

But this implies that

�h − h̃N�2
2 ≥ �h − ĥN�2

2 � δ2m.

Let now Nk := mk/3, where mk is the dimension of our
sequence of embedded hypercubes of sidelengths

δk � m−1/p
k � N−1/p

k .

Putting this into the above equation we get

�h − h̃Nk
�2

2 � N1−2/p
k .

return to talk



Proof Sketch: Only d = 1 (generalization is easy).
We need to construct a family of embedded hypercubes
(hk of dimensions mk and sidelengths δk , where

mk � δ−p
k , p =

2
2α+ 1

.

Start with ψ ∈ Cα and

ψi,k := k−αψ(k ·−i), i, k ∈ N.

We have
�ψi,k�Cα ≤ �ψ�Cα ,

so ψi,k ∈ Cα.
Furthermore, the supports of different ψi,k , ψi�,k are
different, so for a fixed k , the system (ψi,k)i is orthogonal.
A simple computation shows that

�ψi,k�2
2 = k−1−2α�ψ�2

2.

So the system

hk = {
k�

i=1

�iψi,k}



is an embedded hypercube of dimension mk = k with
sidelength δk ∼ k−( 1

2+α). return to talk



Proof Sketch: Suppose for simplicity that Φ is an ONB
(general case not more difficult). Let ci = �f ,ϕi� and
assume that

�(ci)i�w�p < ∞.

Let (cij )j∈N be a nonincreasing rearrangement of (ci)i .
The best N-term approximation of f is given by

fN =
N�

j=1

cjiϕij .

We need to show that

�f − fN�2 � N−(1/p−1/2).

Since Φ is an ONB we have

�f − fN�2 =




∞�

j=N+1

c2
ij




1/2

.



Since �(ci)i�w�p < ∞ we have that



∞�

j=N+1

j−2/p




1/2

= N−1/p+1/2



N2/p−1
∞�

j=N+1

j−2/p




1/2

.

So we need to show that


N2/p−1
∞�

j=N+1

j−2/p




1/2

< ∞.

Suppose for simplicity that N = 2l . Then
∞�

j=N+1

j−2/p ≤
∞�

m=l

Fm,

where

Fm :=
2m�

i=2m−1

i−2/p �
2m�

i=2m−1

2−2m/p � 2−(2/p−1)m.



So
∞�

m=l

Fm � 2−(2/p−1)l .

This implies the desired estimate. return to talk



Proof: Let f (x) = x , x ∈ [0, 1]. Then

f̂ (j) =
� 1

0
x exp(−2πijx)dx =

�
x
−1
2πij

exp(−2πijx)
�1

0

+

� 1

0

1
2πij

exp(−2πijx)dx = − 1
2πij

.

So the nonincreasing rearrangement of cj := �f ,exp(2πij·)�
is of the form c∗

n ∼ n−1 which lies in w�p for p ≥ 1, which
corresponds to a best N-term approximation order 1

2 .
return to talk



Proof Sketch: We will show that for any f ∈ Dα we have for
every p > 1

α+1/2 that the coefficient sequence �f ,ψj,k� lies
in �p. This is almost the result we want.
We suppose that dl

dt l ψ̂(0) = 0 for all l = 1, . . . , �α�, which is
definitely the case for Meyer wavelets and which is
equivalent to
�

p(x)ψ(x)dx = 0 for all polynomials p of degree ≤ �α�.
(1)

Furthermore we suppose that

supp ψj,l ⊂ 2−j [k − a, k + a] (2)

for some fixed a > 0.
Now fix a scale j. For any bounded f we have the
estimate
�

f (x)ψj,k(x)dx =

�

2−j [k−a,k+a]
f (x)2j/2ψ(2j x − k)dx � 2−j/2.

(3)



For f ∈ Cα we have with a Taylor polynomial pj,k(x) of f
around 2−j k that
�

f (x)ψj,k(x)dx =

�

2−j [k−a,k+a]

�
pj,k(x) + O(2−αj)

�
2j/2ψ(2j x−k)dx .

Using the vanishing-moment-property (1) and the
substitution y = 2j x , we get that

�
f (x)ψj,k(x)dx � 2−(α+1/2)j (4)

for all f ∈ Cα.
Let us split the index set Z into

K1 = {k ∈ Z : supp ψj,k intersects the singularity}

and

K1 = {k ∈ Z : supp ψj,k intersects the [0, 1] and not the singularity}.

By (2) we get that

#K1 � 1 and #K2 � 2j . (5)



For k ∈ K1 the wavelet coefficients cj,k := �f ,ψj , k� satisfy
|cj,k | � 2−j/2 by (3) and for k ∈ K2 we have, by (4), that
|cj,k | � 2−j(α+1/2).
Hence we get that
�

k

|cj,k |p �
�

K1

2−pj/2+
�

K1

2−pj(α+1/2) � 2−pj/2+2−j(pα+p/2−1),

by (5). Now suppose that p > 1
α+1/2 . Then

τ := min(p/2,pα+ p/2 − 1) > 0 and
�

j

�

k

|cj,k |p �
�

j

2−τ j < ∞.

return to talk



Proof Sketch: Fix a scale j. Every wavelet ψε
j,k is

approximately supported in a square of sidelength ∼ 2−j .
We need approximately 2j wavelets to cover the
singularity curve.
For those 2j wavelets the corresponding coefficients
cε

j,l := �f ,ψε
j,l� satisfy

|cε
j,l | ≥ 2−j .

So at each scale we have ∼ 2j coefficients of magnitude
2−j .
Therefore we have

�

ε,k

|cε
j,l |

p ≥
�

ε,k

2−pj ≥ 2(1−p)j .

So the wavelet coefficients can only lie in �p if p > 1,
which implies best N-term rate of order 1/2. return to talk
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