Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  A hitchhiker's guide to Khovanov homology - Part IV
Turner, Paul (Auteur de la Conférence) | CIRM (Editeur )

There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what such a guide should look like.
It is quite a risky undertaking because it is all too easy to offend by omission, misrepresentation or other. I have not attempted a complete literature survey and inevitably these notes reflects my personal view, jaundiced as it may often be. My apologies for any offence caused.
I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch, Liam Watson and Ben Webster.
There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what ...

Filtrer

Type
Domaine
Codes MSC

Z

We prove a finiteness result on the $p$-adic cohomology of the Lubin-Tate tower, which allows one to go from mod $p$ and $p$-adic
$GL_n (F)$-representations to Galois representations (compatibly with some global cor-respondences).

14G22 ; 22E50 ; 14F30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Pentagram map and combinatorics: more open questions than solutions
Ovsienko, Valentin (Auteur de la Conférence) | CIRM (Editeur )

The pentagram map and its analogs act on interesting and complicated spaces. The simplest of them is the classical moduli space $M_{0,n}$ of rational curves of genus $0$. These moduli spaces have a rich combinatorial structure related to the notion of "Coxeter frieze pattern" and can be understood as a "cluster manifolds". In this talk, I will explain how to describe the action of the pentagram map (and its analogs) in terms of friezes. The main goal is to understand how does this action fit with the cluster algebra structure, in particular, with the canonical (pre)symplectic form. The pentagram map and its analogs act on interesting and complicated spaces. The simplest of them is the classical moduli space $M_{0,n}$ of rational curves of genus $0$. These moduli spaces have a rich combinatorial structure related to the notion of "Coxeter frieze pattern" and can be understood as a "cluster manifolds". In this talk, I will explain how to describe the action of the pentagram map (and its analogs) in terms of friezes. The main ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Local cohomology modules of a smooth $\mathbb{Z}-algebra$ have a finite number of associated primes
Lyubeznik, Gennady (Auteur de la Conférence) | CIRM (Editeur )

Let $R$ be a commutative Noetherian ring that is a smooth $\mathbb{Z}-algebra$. For each ideal $a$ of $R$ and integer $k$, we prove that the local cohomology module $H^k_a(R)$ has finitely many associated prime ideals. This settles a crucial outstanding case of a conjecture of Lyubeznik asserting this finiteness for local cohomology modules of all regular rings.

13D45 ; 13F20 ; 14B15 ; 13N10 ; 13A35

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  A hitchhiker's guide to Khovanov homology - Part II
Turner, Paul (Auteur de la Conférence) | CIRM (Editeur )

There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what such a guide should look like. It is quite a risky undertaking because it is all too easy to offend by omission, misrepresentation or other. I have not attempted a complete literature survey and inevitably these notes reflects my personal view, jaundiced as it may often be. My apologies for any offence caused. I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch,Liam Watson and Ben Webster. There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  A hitchhiker's guide to Khovanov homology - Part III
Turner, Paul (Auteur de la Conférence) | CIRM (Editeur )

There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what such a guide should look like.
It is quite a risky undertaking because it is all too easy to offend by omission, misrepresentation or other. I have not attempted a complete literature survey and inevitably these notes reflects my personal view, jaundiced as it may often be. My apologies for any offence caused.
I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch, Liam Watson and Ben Webster.
There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what ...

lay:none;"> Nouveau

This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland’s notion of stability conditions on derived categories [2, 5, 6]. I will then proceed to explain the concept of wall-crossing, both in theory, and in examples [1, 2, 4, 6].

- Wall-crossing and birational geometry. Every moduli space of Bridgeland-stable objects comes equipped with a canonically defined nef line bundle. This systematically explains the connection between wall-crossing and birational geometry of moduli spaces. I will explain and illustrate the underlying construction [7].

- Applications : Moduli spaces of sheaves on $K3$ surfaces. I will explain how one can use the theory explained in the previous talk in order to systematically study the birational geometry of moduli spaces of sheaves, focussing on $K3$ surfaces [1, 8].
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland’s notion of stability conditions on derived categories ...

14D20 ; 14E30 ; 14J28 ; 18E30