En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Analysis and its Applications 211 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A perspective on the The Fibonacci trace map - Damanik, David (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we explain how the Fibonacci trace map arises from the Fibonacci substitution and leads to a unified framework in which a variety of models can be studied. We discuss the associated foliations, hyperbolic sets, stable and unstable manifolds, and how the intersections of the stable manifolds with the model-dependent curve of initial conditions allow one to translate dynamical into spectral results.

81Q10 ; 81Q35 ; 37D20 ; 37D50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.[-]
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They ...[+]

65N21 ; 65D99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.[-]
Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They ...[+]

65N21 ; 65D99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Shear coordinates of Weil-Petersson circle homeomorphisms - Wang, Yilin (Auteur de la Conférence) | CIRM H

Multi angle

The shear coordinate is a countable coordinate system to describe increasing self-maps of the unit circle, which is furthermore invariant under modular transformations. Characterizations of circle homeomorphism and quasisymmetric homeomorphisms were obtained by D. Šarić. We are interested in characterizing Weil-Petersson circle homeomorphisms using shears. This class of homeomorphisms arises from the Kähler geometry on the universal Teichmüller space.
For this, we introduce diamond shear which is the minimal combination of shears producing WP homeomorphisms. Diamond shears are closely related to the log-Lambda length introduced by R. Penner, which can be viewed as a renormalized length of an infinite geodesic. We obtain sharp results comparing the class of circle homeomorphisms with square summable diamond shears with the Weil-Petersson class and Hölder classes. We also express the Weil-Petersson metric tensor and symplectic form in terms of infinitesimal shears and diamond shears.
This talk is based on joint work with Dragomir Šarić and Catherine Wolfram. See https://arxiv.org/abs/2211.11497.[-]
The shear coordinate is a countable coordinate system to describe increasing self-maps of the unit circle, which is furthermore invariant under modular transformations. Characterizations of circle homeomorphism and quasisymmetric homeomorphisms were obtained by D. Šarić. We are interested in characterizing Weil-Petersson circle homeomorphisms using shears. This class of homeomorphisms arises from the Kähler geometry on the universal Teichmüller ...[+]

30F45 ; 30F60 ; 32G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

When he was one hundred years old! - Verdier, Norbert (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we will don't speak about Joseph-Louis Lagrange (1736-1813) but about Lagrange's reception at the nineteenth Century. "Who read Lagrange at this Times?", "Why and How?", "What does it mean being a mathematician or doing mathematics at this Century" are some of the questions of our conference. We will give some elements of answers and the case Lagrange will be a pretext in order to explain what are doing historians of mathematics: searching archives and – thanks to a methodology – trying to understand, read and write the Past.
Lagrange - mathematical press - complete works - bibliographic index of mathematical sciences (1894-1912) - Liouville - Boussinesq - Terquem[-]
In this talk we will don't speak about Joseph-Louis Lagrange (1736-1813) but about Lagrange's reception at the nineteenth Century. "Who read Lagrange at this Times?", "Why and How?", "What does it mean being a mathematician or doing mathematics at this Century" are some of the questions of our conference. We will give some elements of answers and the case Lagrange will be a pretext in order to explain what are doing historians of mathematics: ...[+]

01A50 ; 01A55 ; 01A70 ; 01A74 ; 01A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - ...[+]

15-XX ; 41-XX ; 42-XX ; 46-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wavelets, shearlets and geometric frames - Part 1 - Grohs, Philipp (Auteur de la Conférence) | CIRM H

Multi angle

In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While wavelets are now a well-established tool in numerical signal processing (for instance the JPEG2000 coding standard is based on a wavelet transform) it has been recognized in the past decades that they also possess several shortcomings, in particular with respect to the treatment of multidimensional data where anisotropic structures such as edges in images are typically present. This deficiency of wavelets has given birth to the research area of geometric multiscale analysis where frame constructions which are optimally adapted to anisotropic structures are sought. A milestone in this area has been the construction of curvelet and shearlet frames which are indeed capable of optimally resolving curved singularities in multidimensional data.
In this course we will outline these developments, starting with a short introduction to wavelets and then moving on to more recent constructions of curvelets, shearlets and ridgelets. We will discuss their applicability to diverse problems in signal processing such as compression, denoising, morphological component analysis, or the solution of transport PDEs. Implementation aspects will also be covered. (Slides in attachment).[-]
In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While ...[+]

42C15 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Products of Toeplitz operators on the Fock space - Zhu, Kehe (Auteur de la Conférence) | CIRM H

Multi angle

Let $f$ and $g$ be functions, not identically zero, in the Fock space $F^2$ of $C^n$. We show that the product $T_fT_\bar{g}$ of Toeplitz operators on $F^2$ is bounded if and only if $f= e^p$ and $g= ce^{-p}$, where $c$ is a nonzero constant and $p$ is a linear polynomial.

47B35 ; 30H20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will give a survey of the operator theory that is currently evolving on Hardy spaces of Dirichlet series. We will consider recent results about multiplicative Hankel operators as introduced and studied by Helson and developments building on the Gordon-Hedenmalm theorem on bounded composition operators on the $H^2$ space of Dirichlet series.

47B35 ; 30B50 ; 30H10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Continuous and discrete uncertainty principles - Torrésani, Bruno (Auteur de la Conférence) | CIRM H

Multi angle

Uncertainty principles go back to the early years of quantum mechanics. Originally introduced to describe the impossibility for a function to be sharply localized in both the direct and Fourier spaces, localization being measured by variance, it has been generalized to many other situations, including different representation spaces and different localization measures.
In this talk we first review classical results on variance uncertainty inequalities (in particular Heisenberg, Robertson and Breitenberger inequalities). We then focus on discrete (and in particular finite-dimensional) situations, where variance has to be replaced with more suitable localization measures. We then present recent results on support and entropic inequalities, describing joint localization properties of vector expansions with respect to two frames.

Keywords: uncertainty principle - variance of a function - Heisenberg inequality - support inequalities - entropic inequalities[-]
Uncertainty principles go back to the early years of quantum mechanics. Originally introduced to describe the impossibility for a function to be sharply localized in both the direct and Fourier spaces, localization being measured by variance, it has been generalized to many other situations, including different representation spaces and different localization measures.
In this talk we first review classical results on variance uncertainty ...[+]

94A12 ; 94A17 ; 26D20 ; 42C40

Sélection Signaler une erreur