F Nous contacter


0

Combinatorics  | enregistrements trouvés : 72

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

I will discuss recent progress on understanding the dimension of self-similar sets and measures. The main conjecture in this field is that the only way that the dimension of such a fractal can be "non-full" is if the semigroup of contractions which define it is not free. The result I will discuss is that "non-full" dimension implies "almost non-freeness", in the sense that there are distinct words in the semigroup which are extremely close together (super-exponentially in their lengths). Applications include resolution of some conjectures of Furstenberg on the dimension of sumsets and, together with work of Shmerkin, progress on the absolute continuity of Bernoulli convolutions. The main new ingredient is a statement in additive combinatorics concerning the structure of measures whose entropy does not grow very much under convolution. If time permits I will discuss the analogous results in higher dimensions. I will discuss recent progress on understanding the dimension of self-similar sets and measures. The main conjecture in this field is that the only way that the dimension of such a fractal can be "non-full" is if the semigroup of contractions which define it is not free. The result I will discuss is that "non-full" dimension implies "almost non-freeness", in the sense that there are distinct words in the semigroup which are extremely close ...

28A80 ; 37A10 ; 03D99 ; 54H20

La décomposition par substitution des permutations permet de voir ces objets combinatoires comme des arbres. Je présenterai d'abord cette décomposition par substitution, et les arbres sous-jacents, appelés arbres de décomposition. Puis j'exposerai une méthode, complètement algorithmique et reposant sur les arbres de décomposition, qui permet de calculer des spécifications combinatoires de classes de permutations à motifs interdits. La connaissance de telles spécifications combinatoires ouvre de nouvelles perspectives pour l'étude des classes de permutations, que je présenterai en conclusion. La décomposition par substitution des permutations permet de voir ces objets combinatoires comme des arbres. Je présenterai d'abord cette décomposition par substitution, et les arbres sous-jacents, appelés arbres de décomposition. Puis j'exposerai une méthode, complètement algorithmique et reposant sur les arbres de décomposition, qui permet de calculer des spécifications combinatoires de classes de permutations à motifs interdits. La c...

68-06 ; 05A05

Post-edited  Descriptive graph combinatorics. Lecture 1
Marks, Andrew (Auteur de la Conférence) | CIRM (Editeur )

The chromatic number $\chi(G)$ of a graph $G$ is always at least the size of its largest clique (denoted by $\omega(G)$), and there are graphs $G$ with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.
On the other hand, the perfect graph theorem asserts that if neither $G$ nor its complement has an odd hole, then $\chi(G)=\omega(G)$ . (A "hole" is an induced cycle of length at least four, and "odd holes" are holes of odd length.) What happens in between?
With Alex Scott, we recently proved the following, a 1985 conjecture of Gyárfás:

For graphs $G$ with no odd hole, $\chi(G)$ is bounded by a function of $\omega(G)$.

Gyárfás also made the stronger conjecture that for every integer $k$ and for all graphs $G$ with no odd hole of length more than $k$, $\chi(G)$ is bounded by a function of $k$ and $\omega(G)=2$. This is far from settled, and indeed the following much weaker statement is not settled: for every integer $k$, every triangle-free graph with no hole of length at least $k$ has chromatic number bounded by a function of $k$. We give a partial result towards the latter:

For all $k$, every triangle-free graph with no hole of length at least $k$ admits a tree-decomposition into bags with chromatic number bounded by a function of $k$.

Both results have quite pretty proofs, which will more-or-less be given in full.
The chromatic number $\chi(G)$ of a graph $G$ is always at least the size of its largest clique (denoted by $\omega(G)$), and there are graphs $G$ with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.
On the other hand, the perfect graph theorem asserts that if neither $G$ nor its complement has an odd hole, then $\chi(G)=\omega(G)$ . (A "hole" is an induced cycle of length at least four, and "odd holes" are holes of odd length.) What happens in ...

05C15 ; 05C35 ; 05C85

Erdös and Sárközy asked the maximum size of a subset of the first $N$ integers with no two elements adding up to a perfect square. In this talk we prove that the tight answer is $\frac{11}{32}N$ for sufficiently large $N$. We are going to prove some stability results also. This is joint work with Simao Herdade and Ayman Khalfallah.

05A18 ; 11B75

A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the non-backtracking matrix of the Erdos-Renyi random graph and of the Stochastic Block Model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the "spectral redemption" conjecture that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold. A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we ...

05C50 ; 05C80 ; 68T05 ; 91D30

We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss further improvements when more assumptions are allowed. This is ongoing work with Michael Damron. We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss ...

37B10 ; 37A25 ; 68R15

Post-edited  Unramified graph covers of finite degree
Li, Winnie (Auteur de la Conférence) | CIRM (Editeur )

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Post-edited  Coloring graphs on surfaces
Esperet, Louis (Auteur de la Conférence) | CIRM (Editeur )

We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E15 ; 20C30 ; 05A15 ; 05C10

Post-edited  Le problème Graph Motif - Partie 1
Fertin, Guillaume (Auteur de la Conférence) | CIRM (Editeur )

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the component structure of the uniform spanning forest in $\mathbb{Z}^d$ changes every dimension for $d > 8$. This sharpens an earlier result of Benjamini, Kesten, Schramm and the speaker (Annals Math 2004), where we established a phase transition every four dimensions. The proofs are based on a the connection to loop-erased random walks. In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the ...

05C05 ; 05C80 ; 60G50 ; 60J10 ; 60K35 ; 82B43

Multi angle  Pseudo-Anosov braids are generic
Wiest, Bert (Auteur de la Conférence) | CIRM (Editeur )

We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the conjugacy search problem can be solved in quadratic time. The idea behind both results is that generic braids can be conjugated ''easily'' into a rigid braid.
braid groups - Garside groups - Nielsen-Thurston classification - pseudo-Anosov - conjugacy problem
We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the ...

20F36 ; 20F10 ; 20F65

The pentagram map and its analogs act on interesting and complicated spaces. The simplest of them is the classical moduli space $M_{0,n}$ of rational curves of genus $0$. These moduli spaces have a rich combinatorial structure related to the notion of "Coxeter frieze pattern" and can be understood as a "cluster manifolds". In this talk, I will explain how to describe the action of the pentagram map (and its analogs) in terms of friezes. The main goal is to understand how does this action fit with the cluster algebra structure, in particular, with the canonical (pre)symplectic form. The pentagram map and its analogs act on interesting and complicated spaces. The simplest of them is the classical moduli space $M_{0,n}$ of rational curves of genus $0$. These moduli spaces have a rich combinatorial structure related to the notion of "Coxeter frieze pattern" and can be understood as a "cluster manifolds". In this talk, I will explain how to describe the action of the pentagram map (and its analogs) in terms of friezes. The main ...

How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed curves in terms of the genus and the area of the surface. We first describe a systematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This implies a conjecture by Przytycka and Przytycki from 1993, a number of new systolic inequalities in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated surfaces and Gromov's systolic inequality for surfaces are essentially equivalent. We also discuss how these proofs generalize to higher dimensions.
Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove the existence of pants decompositions of length $O(g^{3/2}n^{1/2})$ for any triangulated combinatorial surface of genus g with n triangles, and describe an $O(gn)$-time algorithm to compute such a decomposition.
Finally, we consider the problem of embedding a cut graph (or more generally a cellular graph) with a given combinatorial map on a given surface. Using random triangulations, we prove (essentially) that, for any choice of a combinatorial map, there are some surfaces on which any cellular embedding with that combinatorial map has length superlinear in the number of triangles of the triangulated combinatorial surface. There is also a similar result for graphs embedded on polyhedral triangulations.
systolic geometry - computational topology - topological graph theory - graphs on surfaces - triangulations - random graphs
How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed ...

05C10 ; 68U05 ; 53C23 ; 57M15 ; 68R10

Multi angle  Descriptive graph combinatorics. Lecture 2
Marks, Andrew (Auteur de la Conférence) | CIRM (Editeur )

computability - descriptive set theory - set theory

03Exx ; 03E15

Multi angle  Local limits and connectivity
Ossona de Mendez, Patrice (Auteur de la Conférence) | CIRM (Editeur )

The theory of graph (and structure) convergence gained recently a substantial attention. Various notions of convergence were proposed, adapted to different contexts, including Lovasz et al. theory of dense graph limits based on the notion of left convergence and Benjamini­Schramm theory of bounded degree graph limits based on the notion of local convergence. The latter approach can be extended into a notion of local convergence for graphs (stronger than left convegence) as follows: A sequence of graphs is local convergent if, for every local first-order formula, the probability that the formula is satisfied for a random (uniform independent) assignment of the free variables converge as n grows to infinity. In this talk, we show that the local convergence of a sequence of graphs allows to decompose the graphs in the sequence in a coherent way, into concentration clusters (intuitively corresponding to the limit non-zero measure connected components), a residual cluster, and a negligible set. Also, we mention that if we consider a stronger notion of local-global convergence extending Bollobas and Riordan notion of local-global convergence for graphs with bounded degree, we can further refine our decomposition by exhibiting the expander-like parts.

graphs - structural limit - graph limit - asymptotic connectivity
The theory of graph (and structure) convergence gained recently a substantial attention. Various notions of convergence were proposed, adapted to different contexts, including Lovasz et al. theory of dense graph limits based on the notion of left convergence and Benjamini­Schramm theory of bounded degree graph limits based on the notion of local convergence. The latter approach can be extended into a notion of local convergence for graphs ...

03C13 ; 03C98 ; 05Cxx

A central concept in graph theory is the notion of tree decompositions - these are decompositions that allow us to split a graph up into "nice" pieces by "small" cuts. It is possible to solve many algorithmic problems on graphs by decomposing the graph into "nice" pieces, finding a solution in each of the pieces, and then gluing these solutions together to form a solution to the entire graph. Examples of this approach include algorithms for deciding whether a given input graph is planar, the $k$-Disjoint paths algorithm of Robertson and Seymour, as well as many algorithms on graphs of bounded tree-width. In this talk we will look at a way to compare two tree decompositions of the same graph and decide which of the two is "better". It turns out that for every cut size $k$, every graph $G$ has a tree decomposition with (approximately) this cut size, such that this tree-decomposition is "better than" every other tree-decomposition of the same graph with cut size at most $k$. We will discuss some consequences of this result, as well as possible improvements and research directions. A central concept in graph theory is the notion of tree decompositions - these are decompositions that allow us to split a graph up into "nice" pieces by "small" cuts. It is possible to solve many algorithmic problems on graphs by decomposing the graph into "nice" pieces, finding a solution in each of the pieces, and then gluing these solutions together to form a solution to the entire graph. Examples of this approach include algorithms for ...

05C85 ; 05C35 ; 68Q25

Multi angle  Induced cycles and coloring
Chudnovsky, Maria (Auteur de la Conférence) | CIRM (Editeur )

A hole in a graph is an induced cycle of length at least four, and an odd hole is a hole of odd length. A famous conjecture of A. Gyárfás [1] from 1985 asserts:
Conjecture 1: For all integers $k,l$ there exists $n(k,l)$ such that every graph $G$ with no clique of carnality more than $k$ and no odd hole of length more than $l$ has chromatic number at most $n(k,l)$.

In other words, the conjecture states that the family of graphs with no long odd holes is $\chi$-bounded. Little progress was made on this problem until recently Scott and Seymour proved that Conjecture 1 is true for all pairs $(k,l)$ when $l=3$ (thus excluding all odd holes guarantees $\chi$-boundedness) [3].
No other cases have been settled, and here we focus on the case $k=2$. We resolve the first open case, when $k=2$ and $l=5$, proving that
Theorem 1. Every graph with no triangle and no odd hole of length $>5$ is $82200$-colorable.

Conjecture 1 has a number of other interesting special cases that still remain open; for instance
* Conjecture: For all $l$ every triangle-free graph $G$ with sufficiently large chromatic number has an odd hole of length more than $l$;
* Conjecture: For all $k,l$ every graph with no clique of size more than $k$ and sufficiently large chromatic number has a hole of length more than $l$.

We prove both these statements with the additional assumption that $G$ contains no $5$-hole. (The latter one was proved, but not published, by Scott earlier, improving on [2]). All the proofs follows a similar outline. We start with a leveling of a graph with high chromatic number, that is a classification of the vertices by their distance from a fixed root. Then the graph undergoes several rounds of "trimming" that allows us to focus on a subgraph $M$ with high chromatic number that is, in some sense, minimal. We also ensure that certain pairs of vertices with a neighbor in $M$ can be joined by a path whose interior is anticomplete to $M$. It is now enough to find two long paths between some such pair of vertices, both with interior in $M$ and of lengths of different parity, to obtain a long odd hole.
A hole in a graph is an induced cycle of length at least four, and an odd hole is a hole of odd length. A famous conjecture of A. Gyárfás [1] from 1985 asserts:
Conjecture 1: For all integers $k,l$ there exists $n(k,l)$ such that every graph $G$ with no clique of carnality more than $k$ and no odd hole of length more than $l$ has chromatic number at most $n(k,l)$.

In other words, the conjecture states that the family of graphs with no long odd ...

05C15 ; 05C85

Z