F Nous contacter


0

Partial Differential Equations  | enregistrements trouvés : 126

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed in the talk.
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed ...

37K10 ; 35C07 ; 35C08 ; 35Q53 ; 35Q55 ; 76B15 ; 76Fxx

Post-edited  Inverse problems for fluid dynamics
Yamamoto, Masahiro (Auteur de la Conférence) | CIRM (Editeur )

I discuss several types of inverse problems for fluid dynamics such as Navier-Stokes equations. I prove uniqueness and conditional stability for the formulations by Dirichlet-to-Neumann map and Carleman estimates. This is a joint work with Prof. O. Imanuvilov (Colorado State Univ.)

35R30

In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as (potentially) normally hyperbolic trapping, as well as the role of resonances. In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points ...

35A21 ; 35A27 ; 35B34 ; 35B40 ; 58J40 ; 58J47 ; 83C35 ; 83C57

The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

Post-edited  An introduction to molecular dynamics
Stoltz, Gabriel (Auteur de la Conférence) | CIRM (Editeur )

The aim of this two-hour lecture is to present the mathematical underpinnings of some common numerical approaches to compute average properties as predicted by statistical physics. The first part provides an overview of the most important concepts of statistical physics (in particular thermodynamic ensembles). The aim of the second part is to provide an introduction to the practical computation of averages with respect to the Boltzmann-Gibbs measure using appropriate stochastic dynamics of Langevin type. Rigorous ergodicity results as well as elements on the estimation of numerical errors are provided. The last part is devoted to the computation of transport coefficients such as the mobility or autodiffusion in fluids, relying either on integrated equilibrium correlations à la Green-Kubo, or on the linear response of nonequilibrium dynamics in their steady-states. The aim of this two-hour lecture is to present the mathematical underpinnings of some common numerical approaches to compute average properties as predicted by statistical physics. The first part provides an overview of the most important concepts of statistical physics (in particular thermodynamic ensembles). The aim of the second part is to provide an introduction to the practical computation of averages with respect to the Boltzmann-Gibbs ...

82B31 ; 82B80 ; 65C30 ; 82C31 ; 82C70 ; 60H10

In this talk, I will focus on a Fokker-Planck equation modeling interacting neurons in a network where each neuron is governed by an Integrate and Fire dynamic type. When the network is excitatory, neurons that discharge, instantaneously increased the membrane potential of the neurons of the network with a speed which is proportional to the amplitude of the global activity of the network. The self-excitable nature of these neurons in the case of excitatory networks leads to phenomena of blow-up, once the proportion of neurons that are close to their action potential is too high. In this talk, we are interested in understanding the regimes where solutions globally exist. By new methods of entropy and upper-solution, we give criteria where the phenomena of blow-up can not appear and specify, in some cases, the asymptotic behavior of the solution.

integrate-and-fire - neural networks - Fokker-Planck equation - blow-up
In this talk, I will focus on a Fokker-Planck equation modeling interacting neurons in a network where each neuron is governed by an Integrate and Fire dynamic type. When the network is excitatory, neurons that discharge, instantaneously increased the membrane potential of the neurons of the network with a speed which is proportional to the amplitude of the global activity of the network. The self-excitable nature of these neurons in the case of ...

92B20 ; 82C32 ; 35Q84

Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I will argue that, under certain circumstances, these become anyons. This is made manifest by the emergence of a particular effective Hamiltonian for their motion. The latter is notoriously hard to solve even in simple cases, and well-controled simplifications are highly desirable. I will discuss a possible mean-field approximation, leading to a one-particle energy functional with self-consistent magnetic field.
Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I ...

82B10 ; 81S05 ; 35P15 ; 35Q40 ; 35Q55 ; 81V70

In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to obtain a Carleman estimate up to the boundary. In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to ...

35B45 ; 35S15 ; 93B05 ; 93B07

I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula. I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...

12H25 ; 14G22

Post-edited  On the boundary control method
Oksanen, Lauri (Auteur de la Conférence) | CIRM (Editeur )

This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a geometric version of method works in the case of the wave equation for the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a ...

35R30 ; 35L05 ; 35L20

We consider short-range perturbations of elliptic operators on $R^d$ with constant coefficients, and study the asymptotic properties of the scattering matrix as the energy tends to infinity. We give the leading terms of the symbol of the scattering matrix. The proof employs semiclassical analysis combined with a generalization of the Isozaki-Kitada theory on time-independent modifiers. We also consider scattering matrices for 2 and 3 dimensional Dirac operators. (joint work with Alexander Pushnitski (King's College London) We consider short-range perturbations of elliptic operators on $R^d$ with constant coefficients, and study the asymptotic properties of the scattering matrix as the energy tends to infinity. We give the leading terms of the symbol of the scattering matrix. The proof employs semiclassical analysis combined with a generalization of the Isozaki-Kitada theory on time-independent modifiers. We also consider scattering matrices for 2 and 3 dimensional ...

35P25 ; 35J10 ; 81U20

Post-edited  Darcy problem and crowd motion modeling
Maury, Bertrand (Auteur de la Conférence) | CIRM (Editeur )

We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction pressures, and that are set on the contact network. At the macroscopic level, a similar problem is obtained, that is set on the congested zone.
We emphasize the differences between the two settings: at the macroscopic level, a straight use of the maximum principle shows that congestion actually favors evacuation, which is in contradiction with experimental evidence. On the contrary, in the microscopic setting, the very particular structure of the discrete differential operators makes it possible to reproduce observed "Stop and Go waves", and the so called "Faster is Slower" effect.
We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction ...

34A60 ; 34D20 ; 35F31 ; 35R70 ; 70E50 ; 70E55

Post-edited  25+ years of wavelets for PDEs
Kunoth, Angela (Auteur de la Conférence) | CIRM (Editeur )

Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality and optimality of approximations and related concepts from approximation the- ory. We will see that wavelet bases can serve as a basic ingredient, both for the theory as well as for algorithmic realizations. Particularly for situations where solutions exhibit singularities, wavelet concepts enable adaptive appproximations for which convergence and optimal algorithmic complexity can be established. I will describe corresponding implementations based on biorthogonal spline-wavelets.
Moreover, wavelet-related concepts have triggered new developments for efficiently solving complex systems of PDEs, as they arise from optimization problems with PDEs.
Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality ...

65T60 ; 94A08 ; 65N12 ; 65N30 ; 49J20

We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, we apply our techniques to the more general Robin boundary condition and to a transmission problem which is of significant interest in physical applications. We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, ...

35J10 ; 35P10 ; 35P15 ; 47A10 ; 81Q12 ; 82D55

We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear stochastic transport equations and non-linear modulated dispersive PDEs. It is possible to show that the sample paths of Brownian motion or fractional Brownian motion and related processes have almost surely this kind of irregularity. (joint work with R. Catellier and K. Chouk) We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear ...

35R60 ; 35Q53 ; 35D30 ; 60H15

The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform analyticity for a large set of initial data, turbulence phenomenon for a dense set of smooth initial data in large Sobolev spaces.
From joint works with Patrick Gérard.
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform ...

35B40 ; 35B15 ; 35Q55 ; 37K15 ; 47B35

Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid­structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties. Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...

74S05 ; 76M10 ; 74F10 ; 76D05

At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator simulation. Yet, it was formal from the mathematical point of view and not directly accessible for mathematicians.
This talk will present a mathematically rigorous version of the theory. The way to set out this Gyro-Kinetic Approximation consists of the building of a change of coordinates that decouples the Hamiltonian dynamical system satisfied by the characteristics of charged particles submitted to a strong magnetic field into a part that concerns the fast oscillation induced by the magnetic field and a other part that describes a slower dynamics.
This building is made of two steps. The goal of the first one, so-called "Darboux Algorithm", is to give to the Poisson Matrix (associated to the Hamiltonian system) a form that would achieve the goal of decoupling if the Hamiltonian function does not depend on one given variable. Then the second change of variables (which is in fact a succession of several ones), so-called "Lie Algorithm", is to remove the given variable from the Hamiltonian function without changing the form of the Poisson Matrix.
(Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory, an alternative approach, based on Asymptotic Analysis and Homogenization Methods was developed in Frenod and Sonnendrücker [5, 6, 7], Frenod, Raviart and Sonnendrücker [4], Golse and Saint-Raymond [9] and Ghendrih, Hauray and Nouri [8].)
At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator s...

70H05 ; 82D10 ; 58Z05 ; 58J37 ; 58J45 ; 58D10

Z