Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Correspondence between Ruelle resonances and quantum resonances for non-compact Riemann surfaces
Guillarmou, Colin (Auteur de la Conférence) | CIRM (Editeur )

Filtrer

Type
Domaine
Codes MSC

Z
d interaction pressures, and that are set on the contact network. At the macroscopic level, a similar problem is obtained, that is set on the congested zone.
We emphasize the differences between the two settings: at the macroscopic level, a straight use of the maximum principle shows that congestion actually favors evacuation, which is in contradiction with experimental evidence. On the contrary, in the microscopic setting, the very particular structure of the discrete differential operators makes it possible to reproduce observed "Stop and Go waves", and the so called "Faster is Slower" effect. We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction ...

34A60 ; 34D20 ; 35F31 ; 35R70 ; 70E50 ; 70E55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  The geometrical gyro-kinetic approximation
Frénod, Emmanuel (Auteur de la Conférence) | CIRM (Editeur )

At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator simulation. Yet, it was formal from the mathematical point of view and not directly accessible for mathematicians.
This talk will present a mathematically rigorous version of the theory. The way to set out this Gyro-Kinetic Approximation consists of the building of a change of coordinates that decouples the Hamiltonian dynamical system satisfied by the characteristics of charged particles submitted to a strong magnetic field into a part that concerns the fast oscillation induced by the magnetic field and a other part that describes a slower dynamics.
This building is made of two steps. The goal of the first one, so-called "Darboux Algorithm", is to give to the Poisson Matrix (associated to the Hamiltonian system) a form that would achieve the goal of decoupling if the Hamiltonian function does not depend on one given variable. Then the second change of variables (which is in fact a succession of several ones), so-called "Lie Algorithm", is to remove the given variable from the Hamiltonian function without changing the form of the Poisson Matrix.
(Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory, an alternative approach, based on Asymptotic Analysis and Homogenization Methods was developed in Frenod and Sonnendrücker [5, 6, 7], Frenod, Raviart and Sonnendrücker [4], Golse and Saint-Raymond [9] and Ghendrih, Hauray and Nouri [8].)
At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator s...

70H05 ; 82D10 ; 58Z05 ; 58J37 ; 58J45 ; 58D10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  A spectral inequality for the bi-Laplace operator
Robbiano, Luc (Auteur de la Conférence) | CIRM (Editeur )

In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to obtain a Carleman estimate up to the boundary. In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to ...

35B45 ; 35S15 ; 93B05 ; 93B07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  High energy asymptotics of the scattering matrix for Schrödinger and Dirac operators
Nakamura, Shu (Auteur de la Conférence) | CIRM (Editeur )

We consider short-range perturbations of elliptic operators on $R^d$ with constant coefficients, and study the asymptotic properties of the scattering matrix as the energy tends to infinity. We give the leading terms of the symbol of the scattering matrix. The proof employs semiclassical analysis combined with a generalization of the Isozaki-Kitada theory on time-independent modifiers. We also consider scattering matrices for 2 and 3 dimensional Dirac operators. (joint work with Alexander Pushnitski (King’s College London) We consider short-range perturbations of elliptic operators on $R^d$ with constant coefficients, and study the asymptotic properties of the scattering matrix as the energy tends to infinity. We give the leading terms of the symbol of the scattering matrix. The proof employs semiclassical analysis combined with a generalization of the Isozaki-Kitada theory on time-independent modifiers. We also consider scattering matrices for 2 and 3 dimensional ...

35P25 ; 35J10 ; 81U20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Ancient solutions of geometric flows
Daskalopoulos, Panagiota (Auteur de la Conférence) | CIRM (Editeur )

We will give a survey of recent research progress on ancient or eternal solutions to geometric flows such as the Ricci flow, the Mean Curvature flow and the Yamabe flow.
We will address the classification of ancient solutions to parabolic equations as well as the construction of new ancient solutions from the gluing of two or more solitons.

53C44

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Emergent anyons in quantum Hall physics
Rougerie, Nicolas (Auteur de la Conférence) | CIRM (Editeur )

Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I will argue that, under certain circumstances, these become anyons. This is made manifest by the emergence of a particular effective Hamiltonian for their motion. The latter is notoriously hard to solve even in simple cases, and well-controled simplifications are highly desirable. I will discuss a possible mean-field approximation, leading to a one-particle energy functional with self-consistent magnetic field.
Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I ...

82B10 ; 81S05 ; 35P15 ; 35Q40 ; 35Q55 ; 81V70