F Nous contacter


0

Number Theory  | enregistrements trouvés : 120

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Rational points on smooth projective curves of genus $g \ge 2$ over number fields are in finite number thanks to a theorem of Faltings from 1983. The same result was known over function fields of positive characteristic since 1966 thanks to a theorem of Samuel. The aim of the talk is to give a bound as uniform as possible on this number for curves defined over such fields. In a first part we will report on a result by Rémond concerning the number field case and on a way to strengthen it assuming a height conjecture. During the second part we will focus on function fields of positive characteristic and describe a new result obtained in a joined work with Pacheco. Rational points on smooth projective curves of genus $g \ge 2$ over number fields are in finite number thanks to a theorem of Faltings from 1983. The same result was known over function fields of positive characteristic since 1966 thanks to a theorem of Samuel. The aim of the talk is to give a bound as uniform as possible on this number for curves defined over such fields. In a first part we will report on a result by Rémond concerning the ...

14G05 ; 11G35

Post-edited  On Schmidt's subspace theorem
Evertse, Jan-Hendrik (Auteur de la Conférence) | CIRM (Editeur )

Last year, I published together with Roberto Ferretti a new version of the quantitative subspace theorem, giving a better upper bound for the number of subspaces containing the solutions of the system of inequalities involved. In my lecture, I would like to discuss this improvement, and go into some aspects of its proof.

11J13 ; 11J68

We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the characteristic function, the density, and the repartition function of this distribution in terms of higher transcendental functions, namely Legendre and Meijer functions. We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the cha...

11G05 ; 11G10 ; 14G10 ; 37C30

We prove a number of surprising results about gaps between consecutive primes and arithmetic progressions in the sequence of generalized twin primes which could not have been proven without the recent new results of Zhang, Maynard and Tao. The presented results are far from being immediate consequences of the results about bounded gaps between primes: they require various new ideas, other important properties of the applied sieve function and a closer analysis of the methods of Goldston-Pintz-Yildirim, Green-Tao, Zhang and Maynard-Tao, respectively. We prove a number of surprising results about gaps between consecutive primes and arithmetic progressions in the sequence of generalized twin primes which could not have been proven without the recent new results of Zhang, Maynard and Tao. The presented results are far from being immediate consequences of the results about bounded gaps between primes: they require various new ideas, other important properties of the applied sieve function and a ...

11N05 ; 11B05

Post-edited  A refinement of the abc conjecture
Stewart, Cameron L. (Auteur de la Conférence) | CIRM (Editeur )

We shall discuss joint work with Robert and Tenenbaum on a proposed refinement of the well known abc conjecture.

11N25 ; 11Dxx ; 11N56

Post-edited  Braids and Galois groups
Matzat, B. Heinrich (Auteur de la Conférence) | CIRM (Editeur )

arithmetic fundamental group - Galois theory - braid groups - rigid analytic geometry - rigidity of finite groups

12F12 ; 11R32 ; 20F36 ; 20D08

Post-edited  Zeta functions and monodromy
Veys, Wim (Auteur de la Conférence) | CIRM (Editeur )

The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of $f$, its local monodromy. We will discuss in this survey talk rationality issues for these zeta functions and the origins of the conjecture. The $p$-adic Igusa zeta function, topological and motivic zeta function are (related) invariants of a polynomial $f$, reflecting the singularities of the hypersurface $f = 0$. The first one has a number theoretical flavor and is related to counting numbers of solutions of $f = 0$ over finite rings; the other two are more geometric in nature. The monodromy conjecture relates in a mysterious way these invariants to another singularity invariant of ...

14D05 ; 11S80 ; 11S40 ; 14E18 ; 14J17

We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is non-trivial; the proof relies on power savings estimates for weighted sums of generalized Kloosterman sums which follow from spectral methods. We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is ...

11F37 ; 11P82

Post-edited  The category MF in the semistable case
Faltings, Gerd (Auteur de la Conférence) | CIRM (Editeur )

For smooth schemes the category $MF$ (defined by Fontaine for DVR's) realises the "mysterious functor", and provides natural systems of coeffients for crystalline cohomology. We generalise it to schemes with semistable singularities. The new technical features consist mainly of different methods in commutative algebra

14F30

We study cascades of bifurcations in a simple family of maps on the circle, and connect this behavior to the geometry of an absolute period leaf in genus $2$. The presentation includes pictures of an exotic foliation of the upper half plane, computed with the aid of the Möller-Zagier formula.

30F10 ; 30F30

Erdös and Sárközy asked the maximum size of a subset of the first $N$ integers with no two elements adding up to a perfect square. In this talk we prove that the tight answer is $\frac{11}{32}N$ for sufficiently large $N$. We are going to prove some stability results also. This is joint work with Simao Herdade and Ayman Khalfallah.

05A18 ; 11B75

We give a survey on recent advances in Grothendiek's program of anabelian geometry to characterize arithmetic and geometric objects in Galois theoretic terms. Valuation theory plays a key role in these developments, thus confirming its well deserved place in mainstream mathematics.
The talk notes are available in the PDF file at the bottom of the page.

12F10 ; 12J10 ; 12L12

Post-edited  Unramified graph covers of finite degree
Li, Winnie (Auteur de la Conférence) | CIRM (Editeur )

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Spherical Hecke algebra, Satake transform, and an introduction to local Langlands correspondence.

20C08 ; 22E50 ; 11S37

Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it pertains to these terms. Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it ...

11F66 ; 22E50 ; 22E55

Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex reflection group. This is an ongoing joint project with Iain Gordon. Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex ...

06B15 ; 05A19 ; 55R80

We present heuristics that suggest that there is a uniform bound on the rank of $E(\mathbb{Q})$ as $E$ varies over all elliptic curves over $\mathbb{Q}$. This is joint work with Jennifer Park, John Voight, and Melanie Matchett Wood.

11R29 ; 11G40 ; 11G05 ; 14H52 ; 11R45

Let $p$ be a prime number and $F$ be a non-archimedean field with finite residue class field of characteristic $p$. Understanding the category of Iwahori-Hecke modules for $SL_2(F)$ is of great interest in the study of $p$-modular smooth representations of $SL_2(F)$, as these modules naturally show up as spaces of invariant vectors under the action of the standard pro-$p$-Iwahori subgroup. In this talk, we will discuss a work in progress in which we aim to classify all non-trivial extensions between these modules and to compare them with their analogues for $p$-modular smooth representations of $SL_2(F)$ and with their Galois counterpart in the setting of the local Langlands correspondences in natural characteristic. Let $p$ be a prime number and $F$ be a non-archimedean field with finite residue class field of characteristic $p$. Understanding the category of Iwahori-Hecke modules for $SL_2(F)$ is of great interest in the study of $p$-modular smooth representations of $SL_2(F)$, as these modules naturally show up as spaces of invariant vectors under the action of the standard pro-$p$-Iwahori subgroup. In this talk, we will discuss a work in progress in ...

11F70 ; 11F85 ; 20C08 ; 20G05 ; 22E50

We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

Z