F Nous contacter


0

Mathematical Physics  | enregistrements trouvés : 146

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

The most important works of the young Lagrange were two very learned memoirs on sound and its propagation. In a tour de force of mathematical analysis, he solved the relevant partial differential equations in a novel manner and he applied the solutions to a number of acoustic problems. Although Euler and d'Alembert may have been the only contemporaries who fully appreciated these memoirs, their contents anticipated much more of Fourier analysis than is usually believed. On the physical side, Lagrange properly explained the functioning of string and air-column instruments, although he did not accept harmonic analysis as we now understand it.
Lagrange - acoustics - propagation of sound - harmonic analysis - Fourier analysis - vibrating strings - organ pipes
The most important works of the young Lagrange were two very learned memoirs on sound and its propagation. In a tour de force of mathematical analysis, he solved the relevant partial differential equations in a novel manner and he applied the solutions to a number of acoustic problems. Although Euler and d'Alembert may have been the only contemporaries who fully appreciated these memoirs, their contents anticipated much more of Fourier analysis ...

01A50 ; 35-03 ; 40-03 ; 76-03

Post-edited  Inverse problems for fluid dynamics
Yamamoto, Masahiro (Auteur de la Conférence) | CIRM (Editeur )

I discuss several types of inverse problems for fluid dynamics such as Navier-Stokes equations. I prove uniqueness and conditional stability for the formulations by Dirichlet-to-Neumann map and Carleman estimates. This is a joint work with Prof. O. Imanuvilov (Colorado State Univ.)

35R30

We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a corresponding almost invariant subspace. At leading order, our effective Hamiltonian can be interpreted as the Peierls substitution Hamiltonian widely used in physics for non-magnetic Bloch bands. However, while for non-magnetic Bloch bands the corresponding result is well understood, both on a heuristic and on a rigorous level, for magnetic Bloch bands it is not clear how to even define a Peierls substitution Hamiltonian beyond a formal expression. The source of the difficulty is a topological obstruction: In contrast to the non-magnetic case, magnetic Bloch bundles are generically not trivializable. As a consequence, Peierls substitution Hamiltonians for magnetic Bloch bands turn out to be pseudodifferential operators acting on sections of non-trivial vector bundles over a two-torus, the reduced Brillouin zone. As an application of our results we construct a family of canonical one-band Hamiltonians $H_{\theta=0}$ for magnetic Bloch bands with Chern number $\theta\in\mathbb{Z}$ that generalizes the Hofstadter model $H_{\theta=0}$ for a single non-magnetic Bloch band. It turns out that the spectrum of $H_\theta$ is independent of $\theta$ and thus agrees with the Hofstadter spectrum depicted in his famous (black and white) butterfly. However, the resulting Chern numbers of subbands, corresponding to Hall conductivities, depend on $\theta$ , and thus the models lead to different colored butterflies.
This is joint work with Silvia Freund.
We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a co...

81Q20 ; 81V10 ; 82D20

This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise several difficulties, including inconsistent ordering and choice of representation. The non linear dynamics of an internal kink mode in a tokamak will be used as a test bed for the various formulations. It will be shown that bi-fluid effects can explain to some extent fast plasma relaxations (reconnection), but cannot address kinetic instabilities due to energetic particles. Some results of hybrid codes will be shown. Recent developments and perspectives will be given in conclusion. This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise ...

82D10 ; 76W05

The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these initial data. The same is done for the interfacial pressure $P_I$. Interfacial variables $u_I$ and $P_I$ are thus local constants in the Riemann problem. Thanks to this property there is no difficulty to express the non-conservative system of partial differential equations in local conservative form. With the conventional HLLC wave speed estimates and the extra interfacial speed $u_I$, the four-waves Riemann problem for each phase is solved following the same strategy as in Toro et al. (1994) for the Euler equations. As $u_I$ and $P_I$ are functions only of the Riemann problem initial data, the two-phase Riemann problem consists in two independent Riemann problems with 4 waves only. Moreover, it is shown that these solvers are entropy producing. The method is easy to code and very robust. Its accuracy is validated against exact solutions as well as experimental data. A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these ...

76Mxx ; 76TXX

Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy identity and that existence of a weak solution can be proved. Some of these models will be detailed.
The second result is perhaps more important for applications. It provides understanding on the fact the the growth rate of linear instabilities of the initial (non reduced) model is lower bounded by the growth rate of linear instabilities of the reduced model.
This work has been done with Rémy Sart.
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy ...

76W05 ; 35L65 ; 65M60 ; 35Q30

We present an efficient algorithm for the long time behavior of plasma simulations. We will focus on 4D drift-kinetic model, where the plasma's motion occurs in the plane perpendicular to the magnetic field and can be governed by the 2D guiding-center model. Hermite WENO reconstructions, already proposed in [1], are applied for solving the Vlasov equation. Here we consider an arbitrary computational domain with an appropriate numerical method for the treatment of boundary conditions. Then we apply this algorithm for plasma turbulence simulations. We first solve the 2D guiding-center model in a D-shape domain and investigate the numerical stability of the steady state. Then, the 4D drift-kinetic model is studied with a mixed method, i.e. the semi-Lagrangian method in linear phase and finite difference method during the nonlinear phase. Numerical results show that the mixed method is efficient and accurate in linear phase and it is much stable during the nonlinear phase. Moreover, in practice it has better conservation properties.

Keywords: Cartesian mesh - semi-Lagrangian method - Hermite WENO reconstruction - guiding-center - drift-kinetic model
We present an efficient algorithm for the long time behavior of plasma simulations. We will focus on 4D drift-kinetic model, where the plasma's motion occurs in the plane perpendicular to the magnetic field and can be governed by the 2D guiding-center model. Hermite WENO reconstructions, already proposed in [1], are applied for solving the Vlasov equation. Here we consider an arbitrary computational domain with an appropriate numerical method ...

65M08 ; 65M25 ; 78A35

We give a summary of a joint work with Giovanni Landi (Trieste University) on a non commutative generalization of Henri Cartan's theory of operations, algebraic connections and Weil algebra.

81R10 ; 81R60 ; 16T05

Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel. Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain ...

14D24 ; 22E57 ; 22E46 ; 20G05

Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid­structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties. Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...

74S05 ; 76M10 ; 74F10 ; 76D05

Post-edited  Darcy problem and crowd motion modeling
Maury, Bertrand (Auteur de la Conférence) | CIRM (Editeur )

We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction pressures, and that are set on the contact network. At the macroscopic level, a similar problem is obtained, that is set on the congested zone.
We emphasize the differences between the two settings: at the macroscopic level, a straight use of the maximum principle shows that congestion actually favors evacuation, which is in contradiction with experimental evidence. On the contrary, in the microscopic setting, the very particular structure of the discrete differential operators makes it possible to reproduce observed "Stop and Go waves", and the so called "Faster is Slower" effect.
We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction ...

34A60 ; 34D20 ; 35F31 ; 35R70 ; 70E50 ; 70E55

At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator simulation. Yet, it was formal from the mathematical point of view and not directly accessible for mathematicians.
This talk will present a mathematically rigorous version of the theory. The way to set out this Gyro-Kinetic Approximation consists of the building of a change of coordinates that decouples the Hamiltonian dynamical system satisfied by the characteristics of charged particles submitted to a strong magnetic field into a part that concerns the fast oscillation induced by the magnetic field and a other part that describes a slower dynamics.
This building is made of two steps. The goal of the first one, so-called "Darboux Algorithm", is to give to the Poisson Matrix (associated to the Hamiltonian system) a form that would achieve the goal of decoupling if the Hamiltonian function does not depend on one given variable. Then the second change of variables (which is in fact a succession of several ones), so-called "Lie Algorithm", is to remove the given variable from the Hamiltonian function without changing the form of the Poisson Matrix.
(Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory, an alternative approach, based on Asymptotic Analysis and Homogenization Methods was developed in Frenod and Sonnendrücker [5, 6, 7], Frenod, Raviart and Sonnendrücker [4], Golse and Saint-Raymond [9] and Ghendrih, Hauray and Nouri [8].)
At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator s...

70H05 ; 82D10 ; 58Z05 ; 58J37 ; 58J45 ; 58D10

We consider short-range perturbations of elliptic operators on $R^d$ with constant coefficients, and study the asymptotic properties of the scattering matrix as the energy tends to infinity. We give the leading terms of the symbol of the scattering matrix. The proof employs semiclassical analysis combined with a generalization of the Isozaki-Kitada theory on time-independent modifiers. We also consider scattering matrices for 2 and 3 dimensional Dirac operators. (joint work with Alexander Pushnitski (King's College London) We consider short-range perturbations of elliptic operators on $R^d$ with constant coefficients, and study the asymptotic properties of the scattering matrix as the energy tends to infinity. We give the leading terms of the symbol of the scattering matrix. The proof employs semiclassical analysis combined with a generalization of the Isozaki-Kitada theory on time-independent modifiers. We also consider scattering matrices for 2 and 3 dimensional ...

35P25 ; 35J10 ; 81U20

In this first lecture I will introduce a class of stochastic microscopic models very useful as toy models in non equilibrium statistical mechanics. These are multi-component stochastic particle systems like the exclusion process, the zero range process and the KMP model. I will discuss their scaling limits and the corresponding large deviations principles. Problems of interest are the computation of the current flowing across a system and the understanding of the structure of the stationary non equilibrium states. I will discuss these problems in specific examples and from two different perspectives. The stochastic microscopic and combinatorial point of view and the macroscopic variational approach where the microscopic details of the models are encoded just by the transport coefficients. In this first lecture I will introduce a class of stochastic microscopic models very useful as toy models in non equilibrium statistical mechanics. These are multi-component stochastic particle systems like the exclusion process, the zero range process and the KMP model. I will discuss their scaling limits and the corresponding large deviations principles. Problems of interest are the computation of the current flowing across a system and the ...

82C05 ; 82C22 ; 60F10

This school consists of an array of courses which at first glance may seem to have little in common. The underlying structure relating gauge theory to enumerative geometry to number theory is string theory. In this short introduction, we will attempt to give a schematic overview of how the various topics covered in this school fit into this overarching framework.

81T30 ; 83E30

Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I will argue that, under certain circumstances, these become anyons. This is made manifest by the emergence of a particular effective Hamiltonian for their motion. The latter is notoriously hard to solve even in simple cases, and well-controled simplifications are highly desirable. I will discuss a possible mean-field approximation, leading to a one-particle energy functional with self-consistent magnetic field.
Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I ...

82B10 ; 81S05 ; 35P15 ; 35Q40 ; 35Q55 ; 81V70

Retrieving an arbitrary signal from the magnitudes of its inner products with the elements of a frame is not possible in infinite dimensions. Under certain conditions, signals can be retrieved satisfactorily however.

42C15 ; 46C05 ; 94A12 ; 94A15 ; 94A20

Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under certain natural group action of the group of compactly supported diffeomorphisms of the phase space. This talk is based partly on the joint works with Alexander I. Bufetov and partly on a more recent joint work with Alexander I. Bufetov and Shilei Fan. Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under ...

60G55 ; 46E20 ; 30H20

Z