F Nous contacter


0

Mathematics in Science and Technology   | enregistrements trouvés : 77

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Mathematical modeling and numerical mathematics of today is very much Lagrangian and modern automated modeling techniques lead to differential-algebraic systems. The optimal control for such systems in general cannot be obtained using the classical Euler-Lagrange approach or the maximum principle, but it is shown how this approach can be extended.
differential-algebraic equations - optimal control - Lagrangian subspace - necessary optimality conditions - Hamiltonian system - symplectic flow
Mathematical modeling and numerical mathematics of today is very much Lagrangian and modern automated modeling techniques lead to differential-algebraic systems. The optimal control for such systems in general cannot be obtained using the classical Euler-Lagrange approach or the maximum principle, but it is shown how this approach can be extended.
differential-algebraic equations - optimal control - Lagrangian subspace - necessary optimality ...

93C05 ; 93C15 ; 49K15 ; 34H05

In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine learning.
imaging - image processing - sparsity - convex optimization - inverse problem - super-resolution
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine ...

62H35 ; 65D18 ; 94A08 ; 68U10 ; 90C31 ; 80M50 ; 47N10

Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion of companies that default at the same time. From a mathematical point of view, the coefficient of proportionality, denoted by a, is of great importance as the resulting system is known to blow-up when a takes large values, a blow-up meaning that a macroscopic proportion of companies may default at the same time. In the current talk, we focus on the complementary regime and prove that existence and uniqueness hold in arbitrary time without any blow-up when the excitatory parameter is small enough. Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion ...

35K60 ; 82C31 ; 92B20

Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.

15-XX ; 41-XX ; 42-XX ; 46-XX

In this talk, I will focus on a Fokker-Planck equation modeling interacting neurons in a network where each neuron is governed by an Integrate and Fire dynamic type. When the network is excitatory, neurons that discharge, instantaneously increased the membrane potential of the neurons of the network with a speed which is proportional to the amplitude of the global activity of the network. The self-excitable nature of these neurons in the case of excitatory networks leads to phenomena of blow-up, once the proportion of neurons that are close to their action potential is too high. In this talk, we are interested in understanding the regimes where solutions globally exist. By new methods of entropy and upper-solution, we give criteria where the phenomena of blow-up can not appear and specify, in some cases, the asymptotic behavior of the solution.

integrate-and-fire - neural networks - Fokker-Planck equation - blow-up
In this talk, I will focus on a Fokker-Planck equation modeling interacting neurons in a network where each neuron is governed by an Integrate and Fire dynamic type. When the network is excitatory, neurons that discharge, instantaneously increased the membrane potential of the neurons of the network with a speed which is proportional to the amplitude of the global activity of the network. The self-excitable nature of these neurons in the case of ...

92B20 ; 82C32 ; 35Q84

In this international farewell address about 35 years of research on Dynamic energy Budget theory, I review the ontogeny of the theory, and discuss background, motivation, start, milestones and outlook from a personal perspective. The effort is framed as a case study in Theoretical Biology.

A popular line of research in evolutionary biology is to use time-calibrated phylogenies in order to infer the underlying diversification process. This involves the use of stochastic models of ultrametric trees, i.e., trees whose tips lie at the same distance from the root. We recast some well-known models of ultrametric trees (infinite regular trees, exchangeable coalescents, coalescent point processes) in the framework of so-called comb metric spaces and give some applications of coalescent point processes to the phylogeny of bird species.

However, these models of diversification assume that species are exchangeable particles, and this always leads to the same (Yule) tree shape in distribution. Here, we propose a non-exchangeable, individual-based, point mutation model of diversification, where interspecific pairwise competition is only felt from the part of individuals belonging to younger species. As the initial (meta)population size grows to infinity, the properly rescaled dynamics of species lineages converge to a one-parameter family of coalescent trees interpolating between the caterpillar tree and the Kingman coalescent.

Keywords: ultrametric tree, inference, phylogenetic tree, phylogeny, birth-death process, population dynamics, evolution
A popular line of research in evolutionary biology is to use time-calibrated phylogenies in order to infer the underlying diversification process. This involves the use of stochastic models of ultrametric trees, i.e., trees whose tips lie at the same distance from the root. We recast some well-known models of ultrametric trees (infinite regular trees, exchangeable coalescents, coalescent point processes) in the framework of so-called comb metric ...

60J80 ; 60J85 ; 92D15 ; 92D25 ; 54E45 ; 54E70

The aim is to describe the distribution of immune status in an age-structured population on the basis of a within-host sub-model [1] for continuous waning and occasional boosting. Inspired by both Feller's fundamental work [2] and the more recent delay equation formulation of physiologically structured populations [3,4], we derive, for a given force of infection, a linear renewal equation that can be solved by successive approximation, i.e., by generation expansion (with the generation number corresponding to the number of times an individual became infected).
In joint work in progress with Wilfred de Graaf, Peter Teunis and Mirjam Kretzschmar we want to use either the generation expansion or an invariant/stable distribution as the starting point for the efficient computation of coarse statistics.
The aim is to describe the distribution of immune status in an age-structured population on the basis of a within-host sub-model [1] for continuous waning and occasional boosting. Inspired by both Feller's fundamental work [2] and the more recent delay equation formulation of physiologically structured populations [3,4], we derive, for a given force of infection, a linear renewal equation that can be solved by successive approximation, i.e., by ...

92D30 ; 60J75 ; 45D05

Le principe de décision en démocratie consiste à produire, de l'expression des opinions individuelles, un consensus. Il existe de multiples procédures pour passer des unes à l'autre variant suivant les pays, les jurys... Le Président n'est pas élu de la même façon en France, aux USA ou en Irlande. Quelles seraient les procédures qui répondraient à des critères "raisonnables" de qualité ?
Des mathématiciens se sont intéressés à ce type de questions. Du paradoxe de Condorcet au théorème de Black en passant par le théorème de Arrow, leurs réponses sont parfois déconcertantes.
Le principe de décision en démocratie consiste à produire, de l'expression des opinions individuelles, un consensus. Il existe de multiples procédures pour passer des unes à l'autre variant suivant les pays, les jurys... Le Président n'est pas élu de la même façon en France, aux USA ou en Irlande. Quelles seraient les procédures qui répondraient à des critères "raisonnables" de qualité ?
Des mathématiciens se sont intéressés à ce type de ...

91B12 ; 91B08 ; 91B14 ; 91F10

Post-edited  Le problème Graph Motif - Partie 1
Fertin, Guillaume (Auteur de la Conférence) | CIRM (Editeur )

Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des réseaux biologiques, comme par exemple des réseaux d'interaction de protéines ou des réseaux métaboliques. Graph Motif a fait depuis l'objet d'une attention particulière qui se traduit par un nombre relativement élevé de publications, essentiellement orientées autour de sa complexité algorithmique.
Je présenterai un certain nombre de résultats algorithmiques concernant le problème Graph Motif, en particulier des résultats de FPT (Fixed-Parameter Tractability), ainsi que des bornes inférieures de complexité algorithmique.
Ceci m'amènera à détailler diverses techniques de preuves dont certaines sont plutôt originales, et qui seront je l'espère d'intérêt pour le public.
Le problème Graph Motif est défini comme suit : étant donné un graphe sommet colorié G=(V,E) et un multi-ensemble M de couleurs, déterminer s'il existe une occurrence de M dans G, c'est-à-dire un sous ensemble V' de V tel que
(1) le multi-ensemble des couleurs de V' correspond à M,
(2) le sous-graphe G' induit par V' est connexe.
Ce problème a été introduit, il y a un peu plus de 10 ans, dans le but de rechercher des motifs fonctionnels dans des ...

05C15 ; 05C85 ; 05C90 ; 68Q17 ; 68Q25 ; 68R10 ; 92C42 ; 92D20

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

Depuis une décennie environ, les éléphants de mer sont régulièrement utilisés comme échantillonneurs de l'Océan Austral au point que les données récoltées par ces animaux représentent aujourd'hui la majorité des données océanographiques disponibles pour les hautes latitudes. Les scientifiques profitent de leur comportements migratoires et alimentaires pour équiper les animaux de balises miniatures qui permettent d'échantillonner, à chacune de leur plongée, un ensemble de variables physico-chimiques (salinité, température, oxygène, ...). Outre les informations récoltées sur la biologie de l'animal (comportement alimentaire, zone privilégiée de pêche), les données échantillonnées permettent de reconstituer en 3D les structures océaniques traversées par ces animaux. Cependant, la complexité de ces données, tant du point de vue de leur structure spatiale que temporelle, implique l'utilisation de méthodes mathématiques permettant une reconstitution fiable de ces structures. Au travers d'une promenade dans les zones antarctiques, nous aborderons dans cet exposé, différentes démarches scientifiques permettant de guider le choix d'outils mathématiques pour l'analyse de données récoltées par des animaux. Depuis une décennie environ, les éléphants de mer sont régulièrement utilisés comme échantillonneurs de l'Océan Austral au point que les données récoltées par ces animaux représentent aujourd'hui la majorité des données océanographiques disponibles pour les hautes latitudes. Les scientifiques profitent de leur comportements migratoires et alimentaires pour équiper les animaux de balises miniatures qui permettent d'échantillonner, à chacune de ...

00A06 ; 00A08 ; 92-XX

Quel rapport entre la forme d'un chou-fleur des côtes de Bretagne, des vaisseaux sanguins et les structures fractales ?
Quel rapport entre une maladie génétique et un fichier de musique mp3 ?
Quel rapport entre des dessins faits par Léonard de Vinci et les lois mathématiques gouvernant la forme des plantes ou la reproduction des lapins ?
Quel rapport entre la forme de la terre, le GPS de ma voiture et un vieux puits d'Egypte ?
Pourquoi les météorologues sont capables de prédire une hausse du niveau des océans dans 100 ans mais incapables de prévoir s'il va pleuvoir dans 15 jours ?
Quel rapport entre le cerveau humain et le cerveau d'un ordinateur ?
Nous répondrons à toutes ces questions via des mathématiques simples et élégantes, accessibles à tous.
Quel rapport entre la forme d'un chou-fleur des côtes de Bretagne, des vaisseaux sanguins et les structures fractales ?
Quel rapport entre une maladie génétique et un fichier de musique mp3 ?
Quel rapport entre des dessins faits par Léonard de Vinci et les lois mathématiques gouvernant la forme des plantes ou la reproduction des lapins ?
Quel rapport entre la forme de la terre, le GPS de ma voiture et un vieux puits d'Egypte ?
Pourquoi les ...

00A06 ; 00A08 ; 68-XX ; 92-XX

Microparasites (virus, bactéries, protozoaires ...) et macroparasites (métazoaires : helminthes, arthropodes...) sont omniprésents dans les écosystèmes terrestres et marins. Le nombre total d'espèces parasites sur la planète est supérieur à celui des espèces libres qu'ils colonisent, temporairement ou non, au point que ces organismes interfèrent à toutes les échelles d'organisation du vivant. Les pathologies qu'ils peuvent parfois engendrer sont dépendantes de conditions particulières, soit liées à leur propre virulence, soit à un ensemble de facteurs environnementaux. Dans ce contexte, les modèles mathématiques constituent des outils précieux en épidémiologie, permettant de mieux comprendre les modalités de leur propagation dans les populations d'hôtes. Aborder les stratégies démographiques des micro ou des macroparasites implique des approches mathématiques différentes. Le développement de ces modèles ouvre des perspectives intéressantes pour décrire, analyser et même prévoir les comportements démographiques de ces systèmes couplés. En milieu marin, les macroparasites peuvent aussi poser des problèmes de santé à leurs hôtes quand les équilibres de différentes natures sont déplacés, avec ou sans l'intervention de l'homme (espace protégé, pêche, aquaculture...). En prenant l'exemple de parasites de Poissons téléostéens, l'accent sera mis sur la complexité des processus biologiques en cause, et son intégration dans des modèles mathématiques.

Microparasites (virus, bactéries, protozoaires ...) et macroparasites (métazoaires : helminthes, arthropodes...) sont omniprésents dans les écosystèmes terrestres et marins. Le nombre total d'espèces parasites sur la planète est supérieur à celui des espèces libres qu'ils colonisent, temporairement ou non, au point que ces organismes interfèrent à toutes les échelles d'organisation du vivant. Les pathologies qu'ils peuvent parfois engendrer sont ...

00A06 ; 00A08 ; 92-XX

Lorsque l'on évoque Darwin et la théorie de l'évolution, on ne pense pas aux mathématiques. Pourtant dès que l'on s'intéresse aux mécanismes de la sélection naturelle, au hasard de la reproduction et au rôle des mutations, il est indispensable de les utiliser.
Après une introduction historique aux idées de Darwin sur l'évolution des espèces, nous expliquons l'impact de sa théorie et de ses réflexions sur la communauté scientifique et l'influence qu'il a eue sur la modélisation mathématique des dynamiques de population ou de la génétique des populations. Nous développons quelques exemples d'objets mathématiques, tels les processus de branchement, qui permettent de prédire le futur d'une population (son extinction, sa diversité...) ou au contraire d'en connaître le passé biologique (l'ancêtre commun d'un groupe d'individus par exemple). L'introduction du hasard dans la modélisation des questions liées à la biodiversité et à l'évolution est fondamentale. Elle permet de prendre en compte les variabilités individuelles et de mieux comprendre l'impact des facteurs écologiques et génétiques sur l'évolution des espèces.
Ces idées seront illustrées par des exemples issus de travaux récents développés entre mathématiciens et biologistes.
Lorsque l'on évoque Darwin et la théorie de l'évolution, on ne pense pas aux mathématiques. Pourtant dès que l'on s'intéresse aux mécanismes de la sélection naturelle, au hasard de la reproduction et au rôle des mutations, il est indispensable de les utiliser.
Après une introduction historique aux idées de Darwin sur l'évolution des espèces, nous expliquons l'impact de sa théorie et de ses réflexions sur la communauté scientifique et l'influence ...

00A06 ; 00A08 ; 92-XX

L'écologie est une discipline quantitative dans laquelle les mathématiques sont présentes sous différentes formes depuis très longtemps. En conséquence, l'arrivée massive d'ordinateurs de plus en plus puissants dans les laboratoires dans les dernières décennies, a conduit à une explosion de la modélisation dans ce domaine, sous forme de calculs numériques mais également par l'analyse mathématique de modèles relativement simples. Cette croissance importante de l'activité de modélisation mathématique a été accompagnée par une augmentation de la complexité des modèles d'écologie qui tentent d'intégrer la plus grosse quantité de processus connus possible. Parallèlement, les moyens d'expérimentations et d'observation du milieu naturel n'ont pas cessé de s'améliorer, produisant ainsi des bases de données de plus en plus complètes dans la description du fonctionnement des écosystèmes. Paradoxalement, la formulation de base des processus utilisée dans les modèles complexes est toujours la même et fondée sur des expérimentations réalisées dans des conditions homogènes de laboratoire au cours du XXème siècle. Nous posons la question de l'intérêt d'une description adéquate d'un écosystème pour comprendre ses réponses à différentes perturbations. Une approche consiste à utiliser des formulations mécanistes des processus, c'est à dire des formulations fondées sur des détails expliquant la cause de la réalisation des processus, plutôt que des formulations empiriques acquises dans des conditions différentes du milieu dans lequel on les applique. Cette prise en compte des mécanismes induit encore un surcroit de complexité. Les mathématiques fournissent un ensemble d'idées et de méthodes permettant tout d'abord de produire des formulations adaptées à la prise en compte des mécanismes et également d'aborder cette complexité des modèles écosystémiques, voire dans certains cas de la réduire. Nous illustrerons cette démarche à travers des exemples d'applications variés. L'écologie est une discipline quantitative dans laquelle les mathématiques sont présentes sous différentes formes depuis très longtemps. En conséquence, l'arrivée massive d'ordinateurs de plus en plus puissants dans les laboratoires dans les dernières décennies, a conduit à une explosion de la modélisation dans ce domaine, sous forme de calculs numériques mais également par l'analyse mathématique de modèles relativement simples. Cette croissance ...

34E13 ; 34E15 ; 34E20 ; 92D25 ; 92D40

dynamique adaptative - évolution

00A06 ; 92D15

déchets radioactifs - modélisation mathématique

00A06 ; 93A30

Multi angle  Modèles mathématiques des épidémies
Pardoux, Etienne (Auteur de la Conférence) | CIRM (Editeur )

Il y a cent ans, Sir Ronald Ross tentait de convaincre ses collègues médecins que l'épidémiologie doit être étudiée avec l'aide des mathématiques. Le but de cet exposé est d'expliquer pourquoi les mathématiques sont essentielles pour combattre les épidémies, et de donner quelques indications sur les avancées récentes de la modélisation mathématique en épidémiologie. Il y a cent ans, Sir Ronald Ross tentait de convaincre ses collègues médecins que l'épidémiologie doit être étudiée avec l'aide des mathématiques. Le but de cet exposé est d'expliquer pourquoi les mathématiques sont essentielles pour combattre les épidémies, et de donner quelques indications sur les avancées récentes de la modélisation mathématique en épidémiologie.

00A06 ; 00A08 ; 92C60 ; 92D30

Z