Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Quantum symmetry of conformal blocks and
representations of braid groups at roots of unity
Kohno, Toshitake (Auteur de la Conférence) | CIRM (Editeur )

braid groups - conformal blocks - KZ equation - quantum group symmetry - hypergeometric integrals - Gauss-Manin connection

20F36 ; 32G34 ; 32S40 ; 57M07

Filtrer

Type
Domaine
Codes MSC

Z
pan>

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Invariants of disordered topological insulators
Schulz-Baldes, Hermann (Auteur de la Conférence) | CIRM (Editeur )

According to a widely accepted terminology, a topological insulator is a (independent) Fermion system which has surface modes that are not exposed to Anderson localization. This stability results from topological constraints given by non-trivial invariants like non-commutative Chern numbers and higher winding numbers, but sometimes also more subtle Z2 invariants associated to adequate Fredholm operators with symmetries. Prime examples are quantum Hall systems, but the talk also considers chiral and BdG systems as well as time-reversal symmetric systems with Z2 invariants. According to a widely accepted terminology, a topological insulator is a (independent) Fermion system which has surface modes that are not exposed to Anderson localization. This stability results from topological constraints given by non-trivial invariants like non-commutative Chern numbers and higher winding numbers, but sometimes also more subtle Z2 invariants associated to adequate Fredholm operators with symmetries. Prime examples are ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Discrete systolic geometry and decompositions of triangulated surfaces
De Mesmay, Arnaud (Auteur de la Conférence) | CIRM (Editeur )

How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed curves in terms of the genus and the area of the surface. We first describe a systematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This implies a conjecture by Przytycka and Przytycki from 1993, a number of new systolic inequalities in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated surfaces and Gromov's systolic inequality for surfaces are essentially equivalent. We also discuss how these proofs generalize to higher dimensions.
Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove the existence of pants decompositions of length $O(g^{3/2}n^{1/2})$ for any triangulated combinatorial surface of genus g with n triangles, and describe an $O(gn)$-time algorithm to compute such a decomposition.
Finally, we consider the problem of embedding a cut graph (or more generally a cellular graph) with a given combinatorial map on a given surface. Using random triangulations, we prove (essentially) that, for any choice of a combinatorial map, there are some surfaces on which any cellular embedding with that combinatorial map has length superlinear in the number of triangles of the triangulated combinatorial surface. There is also a similar result for graphs embedded on polyhedral triangulations.
systolic geometry - computational topology - topological graph theory - graphs on surfaces - triangulations - random graphs
How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed ...

05C10 ; 68U05 ; 53C23 ; 57M15 ; 68R10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  A hitchhiker's guide to Khovanov homology - Part II
Turner, Paul (Auteur de la Conférence) | CIRM (Editeur )

There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what such a guide should look like. It is quite a risky undertaking because it is all too easy to offend by omission, misrepresentation or other. I have not attempted a complete literature survey and inevitably these notes reflects my personal view, jaundiced as it may often be. My apologies for any offence caused. I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch,Liam Watson and Ben Webster. There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  A hitchhiker's guide to Khovanov homology - Part III
Turner, Paul (Auteur de la Conférence) | CIRM (Editeur )

There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what such a guide should look like.
It is quite a risky undertaking because it is all too easy to offend by omission, misrepresentation or other. I have not attempted a complete literature survey and inevitably these notes reflects my personal view, jaundiced as it may often be. My apologies for any offence caused.
I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch, Liam Watson and Ben Webster.
There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  A hitchhiker's guide to Khovanov homology - Part IV
Turner, Paul (Auteur de la Conférence) | CIRM (Editeur )

There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what such a guide should look like.
It is quite a risky undertaking because it is all too easy to offend by omission, misrepresentation or other. I have not attempted a complete literature survey and inevitably these notes reflects my personal view, jaundiced as it may often be. My apologies for any offence caused.
I would like to express my warm thanks to Lukas Lewark, Alex Shumakovitch, Liam Watson and Ben Webster.
There are already too many introductory articles on Khovanov homology and certainly another is not needed. On the other hand by now - 15 years after the invention of subject - it is quite easy to get lost after having taken those first few steps. What could be useful is a rough guide to some of the developments over that time and the summer school Quantum Topology at the CIRM in Luminy has provided the ideal opportunity for thinking about what ...