F Nous contacter


0

Research talks  | enregistrements trouvés : 600

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula. I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...

12H25 ; 14G22

In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as (potentially) normally hyperbolic trapping, as well as the role of resonances. In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points ...

35A21 ; 35A27 ; 35B34 ; 35B40 ; 58J40 ; 58J47 ; 83C35 ; 83C57

Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under certain natural group action of the group of compactly supported diffeomorphisms of the phase space. This talk is based partly on the joint works with Alexander I. Bufetov and partly on a more recent joint work with Alexander I. Bufetov and Shilei Fan. Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under ...

60G55 ; 46E20 ; 30H20

The notion of singular hyperbolicity for vector fields has been introduced by Morales, Pacifico and Pujals in order to extend the classical uniform hyperbolicity and include the presence of singularities. This covers the Lorenz attractor. I will present a joint work with Dawei Yang which proves a dichotomy in the space of three-dimensional $C^{1}$-vector fields, conjectured by J. Palis: every three-dimensional vector field can be $C^{1}$-approximated by one which is singular hyperbolic or by one which exhibits a homoclinic tangency. The notion of singular hyperbolicity for vector fields has been introduced by Morales, Pacifico and Pujals in order to extend the classical uniform hyperbolicity and include the presence of singularities. This covers the Lorenz attractor. I will present a joint work with Dawei Yang which proves a dichotomy in the space of three-dimensional $C^{1}$-vector fields, conjectured by J. Palis: every three-dimensional vector field can be $C^{1}...

37C29 ; 37Dxx ; 37C10 ; 37F15

We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in each moduli space. The proofs use recent results in Teichmüller dynamics, especially joint work with Eskin and Filip on the Kontsevich-Zorich cocycle. Joint work with McMullen and Mukamel as well as Eskin, McMullen and Mukamel shows that exotic examples of "higher dimensional Teichmüller discs" do exist. We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in ...

30F60 ; 32G15

Post-edited  Stable rationality - Lecture 1
Pirutka, Alena (Auteur de la Conférence) | CIRM (Editeur )

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral geometry. The most well known example is Smale's 17th problem, which asks to find a solution of a given system of n complex homogeneous polynomial equations in $n$ + 1 unknowns. This problem can be solved in average (and even smoothed) polynomial time.
In the course we will explain the concepts necessary to state and solve Smale's 17th problem. We also show how these ideas lead to new numerical algorithms for computing eigenpairs of matrices that provably run in average polynomial time. Making these algorithms more efficient or adapting them to structured settings are challenging and rewarding research problems. We intend to address some of these issues at the end of the course.
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral ...

65F35 ; 65K05 ; 68Q15 ; 15A12 ; 65F10 ; 90C51 ; 65H10

Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the corresponding nonlinear group of morphims of affine three space. Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the ...

11G05 ; 37A45

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

We discuss some new results for the Cheeger constant in dimension two, including:
- a polygonal version of Faber-Krahn inequality;
- a reverse isoperimetric inequality for convex bodies;
- a Mahler-type inequality in the axisymmetric setting;
- asymptotic behaviour of optimal partition problems.
Based on some recent joint works with D.Bucur,
and for the last part also with B.Velichkov and G.Verzini.

49Q10 ; 52B60 ; 35P15 ; 52A40 ; 52A10 ; 35A15

Retrieving an arbitrary signal from the magnitudes of its inner products with the elements of a frame is not possible in infinite dimensions. Under certain conditions, signals can be retrieved satisfactorily however.

42C15 ; 46C05 ; 94A12 ; 94A15 ; 94A20

Let $p$ be a prime number and $F$ be a non-archimedean field with finite residue class field of characteristic $p$. Understanding the category of Iwahori-Hecke modules for $SL_2(F)$ is of great interest in the study of $p$-modular smooth representations of $SL_2(F)$, as these modules naturally show up as spaces of invariant vectors under the action of the standard pro-$p$-Iwahori subgroup. In this talk, we will discuss a work in progress in which we aim to classify all non-trivial extensions between these modules and to compare them with their analogues for $p$-modular smooth representations of $SL_2(F)$ and with their Galois counterpart in the setting of the local Langlands correspondences in natural characteristic. Let $p$ be a prime number and $F$ be a non-archimedean field with finite residue class field of characteristic $p$. Understanding the category of Iwahori-Hecke modules for $SL_2(F)$ is of great interest in the study of $p$-modular smooth representations of $SL_2(F)$, as these modules naturally show up as spaces of invariant vectors under the action of the standard pro-$p$-Iwahori subgroup. In this talk, we will discuss a work in progress in ...

11F70 ; 11F85 ; 20C08 ; 20G05 ; 22E50

The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, Poissonian, and multiplicative, and with several types of regularizers (TV, frame-based analysis, synthesis, or combinations thereof). I will then describe more recent work on using ADMM for other problems, namely blind deconvolution and image segmentation, as well as very recent work where ADMM is used with plug-in learned denoisers to achieve state-of-the-art results in class-specific image deconvolution. Finally, on the theoretical front, I will describe very recent work on tackling the infamous problem of how to adjust the penalty parameter of ADMM. The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, ...

65J22 ; 65K10 ; 65T60 ; 94A08

We present heuristics that suggest that there is a uniform bound on the rank of $E(\mathbb{Q})$ as $E$ varies over all elliptic curves over $\mathbb{Q}$. This is joint work with Jennifer Park, John Voight, and Melanie Matchett Wood.

11R29 ; 11G40 ; 11G05 ; 14H52 ; 11R45

Post-edited  25+ years of wavelets for PDEs
Kunoth, Angela (Auteur de la Conférence) | CIRM (Editeur )

Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality and optimality of approximations and related concepts from approximation the- ory. We will see that wavelet bases can serve as a basic ingredient, both for the theory as well as for algorithmic realizations. Particularly for situations where solutions exhibit singularities, wavelet concepts enable adaptive appproximations for which convergence and optimal algorithmic complexity can be established. I will describe corresponding implementations based on biorthogonal spline-wavelets.
Moreover, wavelet-related concepts have triggered new developments for efficiently solving complex systems of PDEs, as they arise from optimization problems with PDEs.
Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality ...

65T60 ; 94A08 ; 65N12 ; 65N30 ; 49J20

The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu. The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...

14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22

The aim is to describe the distribution of immune status in an age-structured population on the basis of a within-host sub-model [1] for continuous waning and occasional boosting. Inspired by both Feller's fundamental work [2] and the more recent delay equation formulation of physiologically structured populations [3,4], we derive, for a given force of infection, a linear renewal equation that can be solved by successive approximation, i.e., by generation expansion (with the generation number corresponding to the number of times an individual became infected).
In joint work in progress with Wilfred de Graaf, Peter Teunis and Mirjam Kretzschmar we want to use either the generation expansion or an invariant/stable distribution as the starting point for the efficient computation of coarse statistics.
The aim is to describe the distribution of immune status in an age-structured population on the basis of a within-host sub-model [1] for continuous waning and occasional boosting. Inspired by both Feller's fundamental work [2] and the more recent delay equation formulation of physiologically structured populations [3,4], we derive, for a given force of infection, a linear renewal equation that can be solved by successive approximation, i.e., by ...

92D30 ; 60J75 ; 45D05

Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex reflection group. This is an ongoing joint project with Iain Gordon. Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex ...

06B15 ; 05A19 ; 55R80

We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite temperature. We will also describe the numerical methods which have been developed for those models in the framework of the ANR project Becasim. These are joint works with Reika Fukuizumi, Arnaud Debussche, and Romain Poncet. We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite ...

35Q55 ; 60H15 ; 65M06

An oriented manifold possesses an L-homology fundamental class which is an integral refinement of its Hirzebruch L-class and assembles to the symmetric signature. In joint work with Gerd Laures and James McClure, we give a construction of such an L-homology fundamental class for those oriented singular spaces, which are integral intersection homology Poincaré spaces. Our approach constructs a morphism of ad theories from intersection Poincaré bordism to L-theory. We shall indicate an application to the stratified Novikov conjecture. The latter has been treated analytically by Albin, Leichtnam, Mazzeo and Piazza. An oriented manifold possesses an L-homology fundamental class which is an integral refinement of its Hirzebruch L-class and assembles to the symmetric signature. In joint work with Gerd Laures and James McClure, we give a construction of such an L-homology fundamental class for those oriented singular spaces, which are integral intersection homology Poincaré spaces. Our approach constructs a morphism of ad theories from intersection Poincaré ...

55N33 ; 57R67 ; 57R20 ; 57N80 ; 19G24

Z