F Nous contacter


0

CEMRACS  | enregistrements trouvés : 76

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise several difficulties, including inconsistent ordering and choice of representation. The non linear dynamics of an internal kink mode in a tokamak will be used as a test bed for the various formulations. It will be shown that bi-fluid effects can explain to some extent fast plasma relaxations (reconnection), but cannot address kinetic instabilities due to energetic particles. Some results of hybrid codes will be shown. Recent developments and perspectives will be given in conclusion. This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise ...

82D10 ; 76W05

The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these initial data. The same is done for the interfacial pressure $P_I$. Interfacial variables $u_I$ and $P_I$ are thus local constants in the Riemann problem. Thanks to this property there is no difficulty to express the non-conservative system of partial differential equations in local conservative form. With the conventional HLLC wave speed estimates and the extra interfacial speed $u_I$, the four-waves Riemann problem for each phase is solved following the same strategy as in Toro et al. (1994) for the Euler equations. As $u_I$ and $P_I$ are functions only of the Riemann problem initial data, the two-phase Riemann problem consists in two independent Riemann problems with 4 waves only. Moreover, it is shown that these solvers are entropy producing. The method is easy to code and very robust. Its accuracy is validated against exact solutions as well as experimental data. A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these ...

76Mxx ; 76TXX

Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy identity and that existence of a weak solution can be proved. Some of these models will be detailed.
The second result is perhaps more important for applications. It provides understanding on the fact the the growth rate of linear instabilities of the initial (non reduced) model is lower bounded by the growth rate of linear instabilities of the reduced model.
This work has been done with Rémy Sart.
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy ...

76W05 ; 35L65 ; 65M60 ; 35Q30

Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid­structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties. Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...

74S05 ; 76M10 ; 74F10 ; 76D05

Post-edited  Darcy problem and crowd motion modeling
Maury, Bertrand (Auteur de la Conférence) | CIRM (Editeur )

We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction pressures, and that are set on the contact network. At the macroscopic level, a similar problem is obtained, that is set on the congested zone.
We emphasize the differences between the two settings: at the macroscopic level, a straight use of the maximum principle shows that congestion actually favors evacuation, which is in contradiction with experimental evidence. On the contrary, in the microscopic setting, the very particular structure of the discrete differential operators makes it possible to reproduce observed "Stop and Go waves", and the so called "Faster is Slower" effect.
We describe here formal analogies between the Darcy equations, that describe the flow of a viscous fluid in a porous medium, and some problems arising from the handing of congestion in crowd motion models.
At the microscopic level, individuals are identified to rigid discs, and the dual handling of the non overlapping constraint leads to discrete Darcy-like equations with a unilateral constraint that involves the velocities and interaction ...

34A60 ; 34D20 ; 35F31 ; 35R70 ; 70E50 ; 70E55

At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator simulation. Yet, it was formal from the mathematical point of view and not directly accessible for mathematicians.
This talk will present a mathematically rigorous version of the theory. The way to set out this Gyro-Kinetic Approximation consists of the building of a change of coordinates that decouples the Hamiltonian dynamical system satisfied by the characteristics of charged particles submitted to a strong magnetic field into a part that concerns the fast oscillation induced by the magnetic field and a other part that describes a slower dynamics.
This building is made of two steps. The goal of the first one, so-called "Darboux Algorithm", is to give to the Poisson Matrix (associated to the Hamiltonian system) a form that would achieve the goal of decoupling if the Hamiltonian function does not depend on one given variable. Then the second change of variables (which is in fact a succession of several ones), so-called "Lie Algorithm", is to remove the given variable from the Hamiltonian function without changing the form of the Poisson Matrix.
(Notice that, beside this Geometrical Gyro-Kinetic Approximation Theory, an alternative approach, based on Asymptotic Analysis and Homogenization Methods was developed in Frenod and Sonnendrücker [5, 6, 7], Frenod, Raviart and Sonnendrücker [4], Golse and Saint-Raymond [9] and Ghendrih, Hauray and Nouri [8].)
At the end of the 70', Littlejohn [1, 2, 3] shed new light on what is called the Gyro-Kinetic Approximation. His approach incorporated high-level mathematical concepts from Hamiltonian Mechanics, Differential Geometry and Symplectic Geometry into a physical affordable theory in order to clarify what has been done for years in the domain. This theory has been being widely used to deduce the numerical methods for Tokamak and Stellarator s...

70H05 ; 82D10 ; 58Z05 ; 58J37 ; 58J45 ; 58D10

Post-edited  Interview au CIRM : Yvon Maday
Maday, Yvon (Personne interviewée) | CIRM (Editeur )

Le CIRM : écrin estival du CEMRACS depuis 20 ans !

Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...

49K20 ; 49N70 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Lorsque l'on évoque Darwin et la théorie de l'évolution, on ne pense pas aux mathématiques. Pourtant dès que l'on s'intéresse aux mécanismes de la sélection naturelle, au hasard de la reproduction et au rôle des mutations, il est indispensable de les utiliser.
Après une introduction historique aux idées de Darwin sur l'évolution des espèces, nous expliquons l'impact de sa théorie et de ses réflexions sur la communauté scientifique et l'influence qu'il a eue sur la modélisation mathématique des dynamiques de population ou de la génétique des populations. Nous développons quelques exemples d'objets mathématiques, tels les processus de branchement, qui permettent de prédire le futur d'une population (son extinction, sa diversité...) ou au contraire d'en connaître le passé biologique (l'ancêtre commun d'un groupe d'individus par exemple). L'introduction du hasard dans la modélisation des questions liées à la biodiversité et à l'évolution est fondamentale. Elle permet de prendre en compte les variabilités individuelles et de mieux comprendre l'impact des facteurs écologiques et génétiques sur l'évolution des espèces.
Ces idées seront illustrées par des exemples issus de travaux récents développés entre mathématiciens et biologistes.
Lorsque l'on évoque Darwin et la théorie de l'évolution, on ne pense pas aux mathématiques. Pourtant dès que l'on s'intéresse aux mécanismes de la sélection naturelle, au hasard de la reproduction et au rôle des mutations, il est indispensable de les utiliser.
Après une introduction historique aux idées de Darwin sur l'évolution des espèces, nous expliquons l'impact de sa théorie et de ses réflexions sur la communauté scientifique et l'influence ...

00A06 ; 00A08 ; 92-XX

déchets radioactifs - modélisation mathématique

00A06 ; 93A30

We construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.
PDE - numerical methods - Boltzmann equation - fluid models - hybrid methods
We construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.
PDE - numerical methods - ...

35Q35 ; 65N08 ; 65N22

shallow water - slides - incompressible fluid

76D33 ; 76L05 ; 76B15

The purpose of this presentation is to describe the basic phenomenology of the Rayleigh-Taylor instability, from its early linear phase to its late turbulent and self-similar regime. Simple experiments are performed to illustrate this phenomenology.
fluid mechanics - Rayleigh-Taylor instability - turbulence

76E17 ; 76F25 ; 76F45

discrepancy, optimal design, Latin Hypercube Sampling, computer experiment

68U07 ; 65C60 ; 62L05 ; 62K15 ; 62k20

The simulation of random heterogeneous materials is often very expensive. For instance, in a homogenization setting, the homogenized coefficient is defined from the so-called corrector function, that solves a partial differential equation set on the entire space. This is in contrast with the periodic case, where he corrector function solves an equation set on a single periodic cell. As a consequence, in the stochastic setting, the numerical approximation of the corrector function (and therefore of the homogenized coefficient) is a challenging computational task.
In practice, the corrector problem is solved on a truncated domain, and the exact homogenized coefficient is recovered only in the limit of infinitely large domains. As a consequence of this truncation, the approximated homogenized coefficient turns out to be stochastic, even though the exact homogenized coefficient is deterministic. One then has to resort to Monte-Carlo methods, in order to compute the expectation of the (approximated, apparent) homogenized coefficient within a good accuracy. Variance reduction questions thus naturally come into play, in order to increase the accuracy (e.g. reduce the size of the confidence interval) for a fixed computational cost. In this talk, we will present some variance reduction approaches to address this question.
The simulation of random heterogeneous materials is often very expensive. For instance, in a homogenization setting, the homogenized coefficient is defined from the so-called corrector function, that solves a partial differential equation set on the entire space. This is in contrast with the periodic case, where he corrector function solves an equation set on a single periodic cell. As a consequence, in the stochastic setting, the numerical ...

35B27 ; 60Hxx ; 35R60

This series of 4 lectures discusses the key physical processes in fusion-relevant plasmas, the equations used to describe them, and the interrelationships between them. The focus is on developing comprehensive equations and models for magnetically-confined fusion plasmas on a hierarchy of time scales. The relevant plasma equations for inertial fusion are also briefly mentioned. The pedagogical development begins with the very short time scale microscopic charged-particle-based Coulomb collision processes in a plasma. This microscopic description is then used to develop a comprehensive plasma kinetic equation, fluid moment, magnetohydrodynamic (MHD) and hybrid kinetic/fluid moment plasma descriptions, and finally the long time scale equations for plasma transport across the confining magnetic field. The present grand challenge in magnetic fusion is to develop a "predictive capability" for deuteron-triton (D-T) burning plasmas in ITER (http://www.iter.org). Individual .pdf files of the final, corrected sets of viewgraphs are available via http://homepages.cae.wisc.edu/~callen/plasmas.

This initial lecture first discusses the wide range of characteristic length and time scales involved in modeling fusion plasmas. Next, the Coulomb scattering of a charged test particle's velocity and the differences between the ensemble-averaged electron and ion collisional scattering and relaxation rates are discussed. Then, the mathematical properties of these collisional scattering processes are used to develop a Fokker-Planck collision operator. Finally, a general plasma kinetic equation (PKE) is developed and its general properties discussed.
This series of 4 lectures discusses the key physical processes in fusion-relevant plasmas, the equations used to describe them, and the interrelationships between them. The focus is on developing comprehensive equations and models for magnetically-confined fusion plasmas on a hierarchy of time scales. The relevant plasma equations for inertial fusion are also briefly mentioned. The pedagogical development begins with the very short time scale ...

76X05 ; 82C70

In this second lecture a Green function solution of the perturbed plasma kinetic equation (PKE) that determines the effects of Coulomb collisional scattering on linear Landau damping is presented first. This is followed by the development of the fluid moment equations obtained from the PKE. An extended Chapman-Enskog-type approach is used to determine the needed collisional and fluid moment closures for this comprehensive, hybrid kinetic/fluid model. Finally, closures for collision-dominated unmagnetized and magnetized plasmas are presented and their limitations discussed. In this second lecture a Green function solution of the perturbed plasma kinetic equation (PKE) that determines the effects of Coulomb collisional scattering on linear Landau damping is presented first. This is followed by the development of the fluid moment equations obtained from the PKE. An extended Chapman-Enskog-type approach is used to determine the needed collisional and fluid moment closures for this comprehensive, hybrid kinetic/fluid ...

76X05 ; 82C70

Z