En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Torrésani, Bruno 25 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - ...[+]

15-XX ; 41-XX ; 42-XX ; 46-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - ...[+]

15-XX ; 41-XX ; 42-XX ; 46-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wavelets, shearlets and geometric frames - Part 1 - Grohs, Philipp (Auteur de la Conférence) | CIRM H

Multi angle

In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While wavelets are now a well-established tool in numerical signal processing (for instance the JPEG2000 coding standard is based on a wavelet transform) it has been recognized in the past decades that they also possess several shortcomings, in particular with respect to the treatment of multidimensional data where anisotropic structures such as edges in images are typically present. This deficiency of wavelets has given birth to the research area of geometric multiscale analysis where frame constructions which are optimally adapted to anisotropic structures are sought. A milestone in this area has been the construction of curvelet and shearlet frames which are indeed capable of optimally resolving curved singularities in multidimensional data.
In this course we will outline these developments, starting with a short introduction to wavelets and then moving on to more recent constructions of curvelets, shearlets and ridgelets. We will discuss their applicability to diverse problems in signal processing such as compression, denoising, morphological component analysis, or the solution of transport PDEs. Implementation aspects will also be covered. (Slides in attachment).[-]
In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While ...[+]

42C15 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wavelets, shearlets and geometric frames - Part 2 - Grohs, Philipp (Auteur de la Conférence) | CIRM H

Multi angle

In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While wavelets are now a well-established tool in numerical signal processing (for instance the JPEG2000 coding standard is based on a wavelet transform) it has been recognized in the past decades that they also possess several shortcomings, in particular with respect to the treatment of multidimensional data where anisotropic structures such as edges in images are typically present. This deficiency of wavelets has given birth to the research area of geometric multiscale analysis where frame constructions which are optimally adapted to anisotropic structures are sought. A milestone in this area has been the construction of curvelet and shearlet frames which are indeed capable of optimally resolving curved singularities in multidimensional data.
In this course we will outline these developments, starting with a short introduction to wavelets and then moving on to more recent constructions of curvelets, shearlets and ridgelets. We will discuss their applicability to diverse problems in signal processing such as compression, denoising, morphological component analysis, or the solution of transport PDEs. Implementation aspects will also be covered. (Slides in attachment).[-]
In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While ...[+]

42C15 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview at CIRM: Hans Feichtinger - Feichtinger, Hans G. (Personne interviewée) | CIRM H

Post-edited

The Jean Morlet Chair is a scientific collaboration between CIRM -CNRS-SMF-, Aix-Marseille Université and the City of Marseille. Two international calls are launched every year to attract innovative researchers in an area of mathematical sciences. Selected candidates who must come from a foreign institution can spend a semester in residence at CIRM, where they run a full program of mathematical events in collaboration with a local project holder. Hans-Georg Feichtinger (University of Vienna) and Bruno Torresani (I2M Marseille) have been in charge of the second semester 2014 which will end in January 2015. The focus is on 'Computational Time-Frequency and Coorbit Theory'. Starting with a Research in Pairs event at the end of August, then three larger events-a School for young scientists, a main Conference and Small group- rather close in dates to enable participants to stay for more than one event, their semester will end on a second Research in Pairs in January 2015 and a celebratory event at the very end of the semester to celebrate 30 years of wavelets.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
The Jean Morlet Chair is a scientific collaboration between CIRM -CNRS-SMF-, Aix-Marseille Université and the City of Marseille. Two international calls are launched every year to attract innovative researchers in an area of mathematical sciences. Selected candidates who must come from a foreign institution can spend a semester in residence at CIRM, where they run a full program of mathematical events in collaboration with a local project ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Continuous and discrete uncertainty principles - Torrésani, Bruno (Auteur de la Conférence) | CIRM H

Multi angle

Uncertainty principles go back to the early years of quantum mechanics. Originally introduced to describe the impossibility for a function to be sharply localized in both the direct and Fourier spaces, localization being measured by variance, it has been generalized to many other situations, including different representation spaces and different localization measures.
In this talk we first review classical results on variance uncertainty inequalities (in particular Heisenberg, Robertson and Breitenberger inequalities). We then focus on discrete (and in particular finite-dimensional) situations, where variance has to be replaced with more suitable localization measures. We then present recent results on support and entropic inequalities, describing joint localization properties of vector expansions with respect to two frames.

Keywords: uncertainty principle - variance of a function - Heisenberg inequality - support inequalities - entropic inequalities[-]
Uncertainty principles go back to the early years of quantum mechanics. Originally introduced to describe the impossibility for a function to be sharply localized in both the direct and Fourier spaces, localization being measured by variance, it has been generalized to many other situations, including different representation spaces and different localization measures.
In this talk we first review classical results on variance uncertainty ...[+]

94A12 ; 94A17 ; 26D20 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Sound, music and wavelets in Marseille - Kronland-Martinet, Richard (Auteur de la Conférence) | CIRM H

Multi angle

In this conference, I start by presenting the first applications and developments of wavelet methods made in Marseille in 1985 in the framework of sounds and music. A description of the earliest wavelet transform implementation using the SYTER processor is given followed by a discussion related to the first signal analysis investigations. Sound examples of the initial sound transformations obtained by altering the wavelet representation are further presented. Then methods aiming at estimating sound synthesis parameters such as amplitude and frequency modulation laws are described. Finally, new challenges brought by these early works are presented, focusing on the relationship between low-level synthesis parameters and sound perception and cognition. An example of the use of the wavelet transforms to estimate sound invariants related to the evocation of the "object" and the "action" is presented.

Keywords : sound and music - first wavelet applications - signal analysis - sound synthesis - fast wavelet algorithms - instantaneous frequency estimation - sound invariants[-]
In this conference, I start by presenting the first applications and developments of wavelet methods made in Marseille in 1985 in the framework of sounds and music. A description of the earliest wavelet transform implementation using the SYTER processor is given followed by a discussion related to the first signal analysis investigations. Sound examples of the initial sound transformations obtained by altering the wavelet representation are ...[+]

00A65 ; 42C40 ; 65T60 ; 94A12 ; 97M10 ; 97M80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Noncommutative geometry and time-frequency analysis - Luef, Franz (Auteur de la Conférence) | CIRM H

Multi angle

In my talk I am presenting a link between time-frequency analysis and noncommutative geometry. In particular, a connection between the Moyal plane, noncommutative tori and time-frequency analysis. After a brief description of a dictionary between these two areas I am going to explain some consequences for time-frequency analysis and noncommutative geometry such as the construction of projections in the mentioned operator algebras and Gabor frames.

Keywords: modulation spaces - Banach-Gelfand triples - noncommutative tori - Moyal plane - noncommutative geometry - deformation quantization[-]
In my talk I am presenting a link between time-frequency analysis and noncommutative geometry. In particular, a connection between the Moyal plane, noncommutative tori and time-frequency analysis. After a brief description of a dictionary between these two areas I am going to explain some consequences for time-frequency analysis and noncommutative geometry such as the construction of projections in the mentioned operator algebras and Gabor ...[+]

46Fxx ; 46Kxx ; 46S60 ; 81S05 ; 81S10 ; 81S30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Phase-space delocalization - Paul, Thierry (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An « ISI » perspective on wavelets - Flandrin, Patrick (Auteur de la Conférence) | CIRM H

Multi angle

The introduction of wavelets in the mid 80's has significantly reshaped some areas of the scientific landscape by establishing bridges between previously disconnected domains, and eventually leading to a new paradigm. This generally accepted-yet loose-claim can be given a more precise form by exploiting bibliometric databases such as the ISI Web of Science. Preliminary results in this direction will be reported here, based on multiple entries where authors, references, keywords and disciplines are used as nodes of a network in which the links correspond to their co-appearance in the same paper. While the evolution in time of such an « heterogeneous net » gives a quantified perspective on the birth and growth of wavelets as a well-identified scientific field of its own, it also raises many interpretation issues (related, e.g., to automation vs. expertise) whose implications go beyond this peculiar case study.

Keywords : wavelets - history - bibliometry - network, paradigm[-]
The introduction of wavelets in the mid 80's has significantly reshaped some areas of the scientific landscape by establishing bridges between previously disconnected domains, and eventually leading to a new paradigm. This generally accepted-yet loose-claim can be given a more precise form by exploiting bibliometric databases such as the ISI Web of Science. Preliminary results in this direction will be reported here, based on multiple entries ...[+]

01-XX ; 42-XX ; 68-XX ; 94-XX

Sélection Signaler une erreur