En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Dartyge, Cécile 16 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Large gaps between primes in subsets - Maynard, James (Auteur de la conférence) | CIRM H

Post-edited

All previous methods of showing the existence of large gaps between primes have relied on the fact that smooth numbers are unusually sparse. This feature of the argument does not seem to generalise to showing large gaps between primes in subsets, such as values of a polynomial. We will talk about recent work which allows us to show large gaps between primes without relying on smooth number estimates. This then generalizes naturally to show long strings of consecutive composite values of a polynomial. This is joint work with Ford, Konyagin, Pomerance and Tao.[-]
All previous methods of showing the existence of large gaps between primes have relied on the fact that smooth numbers are unusually sparse. This feature of the argument does not seem to generalise to showing large gaps between primes in subsets, such as values of a polynomial. We will talk about recent work which allows us to show large gaps between primes without relying on smooth number estimates. This then generalizes naturally to show long ...[+]

11N05 ; 11N35 ; 11N36

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Small sumsets in continuous and discrete settings - de Roton, Anne (Auteur de la conférence) | CIRM H

Multi angle

Given a subset A of an additive group, how small can the sumset $A+A = \lbrace a+a' : a, a' \epsilon$ $A \rbrace$ be ? And what can be said about the structure of $A$ when $A + A$ is very close to the smallest possible size ? The aim of this talk is to partially answer these two questions when A is either a subset of $\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{R}$ or $\mathbb{T}$ and to explain how in this problem discrete and continuous setting are linked. This should also illustrate two important principles in additive combinatorics : reduction and rectification.
This talk is partially based on some joint work with Pablo Candela and some other work with Paul Péringuey.[-]
Given a subset A of an additive group, how small can the sumset $A+A = \lbrace a+a' : a, a' \epsilon$ $A \rbrace$ be ? And what can be said about the structure of $A$ when $A + A$ is very close to the smallest possible size ? The aim of this talk is to partially answer these two questions when A is either a subset of $\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{R}$ or $\mathbb{T}$ and to explain how in this problem discrete and continuous ...[+]

11B13 ; 11B83 ; 11B75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy
$ \sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$
is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, Ostrowski and Kesten characterized the intervals with this property.
We will discuss the bounded remainder property for sets in higher dimensions. In particular, we will see that parallelotopes spanned by vectors in $\mathbb{Z}\alpha + \mathbb{Z}^d$ have bounded remainder. Moreover, we show that this condition can be established by exploiting a connection between irrational rotation on $\mathbb{T}^d$ and certain cut-and-project sets. If time allows, we will discuss bounded remainder sets for the continuous irrational rotation $\lbrace t \alpha : t$ $\epsilon$ $\mathbb{R}^+\rbrace$ in two dimensions.[-]
Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy
$ \sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$
is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, ...[+]

11K38 ; 11J71 ; 11K06

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Symbolic bounded remainder sets - Berthé, Valérie (Auteur de la conférence) | CIRM H

Multi angle

Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded discrepancy provides particularly strong convergence properties of ergodic sums. It is also closely related to the notions of balance in word combinatorics.[-]
Discrepancy is a measure of equidistribution for sequences of points. We consider here discrepancy in the setting of symbolic dynamics and we discuss the existence of bounded remainder sets for some families of zero entropy subshifts, from a topological dynamics viewpoint. A bounded remainder set is a set which yields bounded discrepancy, that is, the number of times it is visited differs by the expected time only by a constant. Bounded ...[+]

37B10 ; 11K50 ; 37A30 ; 28A80 ; 11J70 ; 11K38

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Non-normal sets - Queffélec, Martine (Auteur de la conférence) | CIRM H

Multi angle

The talk will have two main parts:
At the beginning of his mathematical career, Christian inherits from his advisor, Gérard Rauzy, some appetite for distributions of arithmetical sequences, with a special interest for those obtained by simple algorithmic constructions. I will discuss his result on “normal sets associated with substitutions" [?] and continue with recent developments and open questions on sets of non-normal numbers, in a more general setting.
We have written 48 joint papers with Christian. As a tribute to his memory I will present a short survey of our most important papers and recall some of the memorable moments of our cooperation.[-]
The talk will have two main parts:
At the beginning of his mathematical career, Christian inherits from his advisor, Gérard Rauzy, some appetite for distributions of arithmetical sequences, with a special interest for those obtained by simple algorithmic constructions. I will discuss his result on “normal sets associated with substitutions" [?] and continue with recent developments and open questions on sets of non-normal numbers, in a more ...[+]

11Kxx ; 37EXX ; 11Jxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Possibles et impossibles en mathématiques - Banderier, Cyril (Auteur de la conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The Rudin-Shapiro function in finite fields - Dartyge, Cécile (Auteur de la conférence) | CIRM H

Virtualconference

Let $q=p^r$, where $p$ is a prime number and $ ß=(\beta_1 ,\ldots ,\beta_r)$ be a basis of $\mathbb{F}_q$ over $\mathbb{F}_p$.
Any $\xi \in \mathbb{F}_q$ has a unique representation $\xi =\sum_{i=1}^r x_i \beta _i$ with $x_1,\ldots ,x_r \in \mathbb{F}_p$.
The coefficients $x_1,\ldots ,x_r$ are called the digits of $\xi$ with respect to the basis $ß$.
The analog of the Rudin-Shapiro function is $R(\xi)=x_1x_2+\cdots + x_{r-1}x_r$. For $f \in \mathbb{F}_q [X]$, non constant and $c\in\mathbb{F}_p$, we obtain some formulas for the number of solutions in $\mathbb{F}_q$ of $R(f(\xi ))=c$. The proof uses the Hooley-Katz bound for the number of zeros of polynomials in $\mathbb{F}_p$ with several variables.

This is a joint work with László Mérai and Arne Winterhof.[-]
Let $q=p^r$, where $p$ is a prime number and $ ß=(\beta_1 ,\ldots ,\beta_r)$ be a basis of $\mathbb{F}_q$ over $\mathbb{F}_p$.
Any $\xi \in \mathbb{F}_q$ has a unique representation $\xi =\sum_{i=1}^r x_i \beta _i$ with $x_1,\ldots ,x_r \in \mathbb{F}_p$.
The coefficients $x_1,\ldots ,x_r$ are called the digits of $\xi$ with respect to the basis $ß$.
The analog of the Rudin-Shapiro function is $R(\xi)=x_1x_2+\cdots + x_{r-1}x_r$. For $f \in ...[+]

11A63 ; 11T23 ; 11T30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove a number of surprising results about gaps between consecutive primes and arithmetic progressions in the sequence of generalized twin primes which could not have been proven without the recent new results of Zhang, Maynard and Tao. The presented results are far from being immediate consequences of the results about bounded gaps between primes: they require various new ideas, other important properties of the applied sieve function and a closer analysis of the methods of Goldston-Pintz-Yildirim, Green-Tao, Zhang and Maynard-Tao, respectively.[-]
We prove a number of surprising results about gaps between consecutive primes and arithmetic progressions in the sequence of generalized twin primes which could not have been proven without the recent new results of Zhang, Maynard and Tao. The presented results are far from being immediate consequences of the results about bounded gaps between primes: they require various new ideas, other important properties of the applied sieve function and a ...[+]

11N05 ; 11B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk presents some news on bilinear decompositions of the Möbius function. In particular, we will exhibit a family of such decompositions inherited from Motohashi's proof of the Hoheisel Theorem that leads to
$\sum_{n\leq X,(n,q)=1) }^{} \mu (n)e(na/q)\ll X\sqrt{q}/\varphi (q)$
for $q \leq X^{1/5}$ and any $a$ prime to $q$.

11N37 ; 11Y35 ; 11A25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given an additive function $f$ and a multiplicative function $g$, let
$E(f,g;x)=\#\left \{ n\leq x:f(n)=g(n) \right \}$
We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that
$E(\varepsilon ,g;x)\gg \frac{x}{\left ( \log \log x\right )^{1+\varepsilon }}$,
while we prove that $E(\varepsilon ,g;x)=o(x)$ as $x\rightarrow \infty$ for every multiplicative function $g$.[-]
Given an additive function $f$ and a multiplicative function $g$, let
$E(f,g;x)=\#\left \{ n\leq x:f(n)=g(n) \right \}$
We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that
$E(\varepsilon ...[+]

11N37 ; 11K65 ; 11N60

Sélection Signaler une erreur