F Nous contacter


0

Search by event  1487 | enregistrements trouvés : 5

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

I shall classify current approaches to multiple inferences according to goals, and discuss the basic approaches being used. I shall then highlight a few challenges that await our attention : some are simple inequalities, others arise in particular applications.

62J15 ; 62P10

Multi angle  Free probability and random matrices
Biane, Philippe (Auteur de la Conférence) | CIRM (Editeur )

I will explain how free probability, which is a theory of independence for non-commutative random variables, can be applied to understand the spectra of various models of random matrices.

15B52 ; 60B20 ; 46L53 ; 46L54

Les processus de Hawkes forment une classe des processus ponctuels pour lesquels l'intensité s'écrit comme :

$\lambda(t)= \int_{0}^{t^-} h(t-s)dN_s +\nu$

où $N$ représente le processus de Hawkes, et $\nu > 0$. Les processus de Hawkes multivariés ont une intensité similaire sauf que des interractions entre les différentes composantes du processus de Hawkes sont autorisées. Les paramètres de ce modèle sont donc les fonctions d'interractions $h_{k,\ell}, k, \ell \le M$ et les constantes $\nu_\ell, \ell \le M$. Dans ce travail nous étudions une approche bayésienne nonparamétrique pour estimer les fonctions $h_{k,\ell}$ et les constantes $\nu_\ell$. Nous présentons un théorème général caractérisant la vitesse de concentration de la loi a posteriori dans de tels modèles. L'intérêt de cette approche est qu'elle permet la caractérisation de la convergence en norme $L_1$ et demande assez peu d'hypothèses sur la forme de la loi a priori. Une caractérisation de la convergence en norme $L_2$ est aussi considérée. Nous étudierons un exemple de lois a priori adaptées à l'étude des interractions neuronales. Travail en collaboration avec S. Donnet et V. Rivoirard.
Les processus de Hawkes forment une classe des processus ponctuels pour lesquels l'intensité s'écrit comme :

$\lambda(t)= \int_{0}^{t^-} h(t-s)dN_s +\nu$

où $N$ représente le processus de Hawkes, et $\nu > 0$. Les processus de Hawkes multivariés ont une intensité similaire sauf que des interractions entre les différentes composantes du processus de Hawkes sont autorisées. Les paramètres de ce modèle sont donc les fonctions d'interractions ...

62Gxx ; 62G05 ; 62F15 ; 62G20

Multi angle  Selective inference in genetics
Sabatti, Chiara (Auteur de la Conférence) | CIRM (Editeur )

Geneticists have always been aware that, when looking for signal across the entire genome, one has to be very careful to avoid false discoveries. Contemporary studies often involve a very large number of traits, increasing the challenges of "looking every-where". I will discuss novel approaches that allow an adaptive exploration of the data, while guaranteeing reproducible results.

62F15 ; 62J15 ; 62P10 ; 92D10

Multi angle  Learning on the symmetric group
Vert, Jean-Philippe (Auteur de la Conférence) | CIRM (Editeur )

Many data can be represented as rankings or permutations, raising the question of developing machine learning models on the symmetric group. When the number of items in the permutations gets large, manipulating permutations can quickly become computationally intractable. I will discuss two computationally efficient embeddings of the symmetric groups in Euclidean spaces leading to fast machine learning algorithms, and illustrate their relevance on biological applications and image classification. Many data can be represented as rankings or permutations, raising the question of developing machine learning models on the symmetric group. When the number of items in the permutations gets large, manipulating permutations can quickly become computationally intractable. I will discuss two computationally efficient embeddings of the symmetric groups in Euclidean spaces leading to fast machine learning algorithms, and illustrate their relevance ...

62H30 ; 62P10 ; 68T05

Nuage de mots clefs ici

Z