F Nous contacter


0

Search by event  1558 | enregistrements trouvés : 5

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Multi angle  Multi-time distribution of periodic TASEP
Baik, Jinho (Auteur de la Conférence) | CIRM (Editeur )

We consider periodic TASEP with periodic step initial condition, and evaluate the joint distribution of the locations of m particles. For arbitrary indices and times, we find a formula for the multi-time, multi-space joint distribution in terms of an integral of a Fredholm determinant. We then discuss the large time limit in the so-called relaxation scale. The one-point distributions for other initial conditions are also going to discussed.
Based on joint work with Zhipeng Liu (NYU).
We consider periodic TASEP with periodic step initial condition, and evaluate the joint distribution of the locations of m particles. For arbitrary indices and times, we find a formula for the multi-time, multi-space joint distribution in terms of an integral of a Fredholm determinant. We then discuss the large time limit in the so-called relaxation scale. The one-point distributions for other initial conditions are also going to discus...

82C22 ; 60K35 ; 82C43

The talk is about a class of systems of 2d statistical mechanics, such as random tilings, noncolliding walks, log-gases and random matrix-type distributions. Specific members in this class are integrable, which means that available exact formulas allow delicate asymptotic analysis leading to the Gaussian Free Field, sine-process, Tracy-Widom distributions. Extending the results beyond the integrable cases is challenging. I will speak about a recent progress in this direction: about universal local limit theorems for a class of lozenge and domino tilings, noncolliding random walks; and about GFF-type asymptotic theorems for global fluctuations in these systems and in discrete beta log­gases. The talk is about a class of systems of 2d statistical mechanics, such as random tilings, noncolliding walks, log-gases and random matrix-type distributions. Specific members in this class are integrable, which means that available exact formulas allow delicate asymptotic analysis leading to the Gaussian Free Field, sine-process, Tracy-Widom distributions. Extending the results beyond the integrable cases is challenging. I will speak about a ...

60C05 ; 60G50 ; 52C20

Complete wetting in the context of the low temperature two-dimensional Ising model is characterized by creation of a mesoscopic size layer of the "-" phase above an active substrate. Adding a small positive magnetic field h makes "-"-phase unstable, and the layer becomes only microscopically thick. Critical prewetting corresponds to a continuous divergence of this layer as h tends to zero. There is a conjectured 1/3 (diffusive) scaling leading to Ferrari-Spohn diffusions. Rigorous results were established for polymer models of random and self-avoiding walks under vanishing area tilts.
A similar 1/3-scaling is conjectured to hold for top level lines of low temperature SOS-type interfaces in three dimensions. In the latter case, the effective local structure is that of ordered walks, again under area tilts. The conjectured scaling limits (rigorously established in the random walk context) are ordered diffusions driven by Airy Slatter determinants.
Based on joint walks with Senya Shlosman, Yvan Velenik and Vitali Wachtel.
Complete wetting in the context of the low temperature two-dimensional Ising model is characterized by creation of a mesoscopic size layer of the "-" phase above an active substrate. Adding a small positive magnetic field h makes "-"-phase unstable, and the layer becomes only microscopically thick. Critical prewetting corresponds to a continuous divergence of this layer as h tends to zero. There is a conjectured 1/3 (diffusive) scaling leading ...

60K35 ; 82B41 ; 60G50 ; 60F17

Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. Laslier and M. Legras.
Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. ...

60K35 ; 82C20

Nuage de mots clefs ici

Z