F Nous contacter


0

Search by event  1595 | enregistrements trouvés : 5

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Post-edited  Large gaps between primes in subsets
Maynard, James (Auteur de la Conférence) | CIRM (Editeur )

All previous methods of showing the existence of large gaps between primes have relied on the fact that smooth numbers are unusually sparse. This feature of the argument does not seem to generalise to showing large gaps between primes in subsets, such as values of a polynomial. We will talk about recent work which allows us to show large gaps between primes without relying on smooth number estimates. This then generalizes naturally to show long strings of consecutive composite values of a polynomial. This is joint work with Ford, Konyagin, Pomerance and Tao. All previous methods of showing the existence of large gaps between primes have relied on the fact that smooth numbers are unusually sparse. This feature of the argument does not seem to generalise to showing large gaps between primes in subsets, such as values of a polynomial. We will talk about recent work which allows us to show large gaps between primes without relying on smooth number estimates. This then generalizes naturally to show long ...

11N05 ; 11N35 ; 11N36

Multi angle  Angles of Gaussian primes
Rudnick, Zeév (Auteur de la Conférence) | CIRM (Editeur )

Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a random matrix model and by function field considerations. Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a ...

11M26 ; 11M06 ; 11F66 ; 11T55 ; 11R44 ; 11M50

Multi angle  Large character sums
Lamzouri, Youness (Auteur de la Conférence) | CIRM (Editeur )

For a non-principal Dirichlet character $\chi$ modulo $q$, the classical Pólya-Vinogradov inequality asserts that
$M (\chi) := \underset{x}{max}$$| \sum_{n \leq x}$$\chi(n)| = O (\sqrt{q} log$ $q)$.
This was improved to $\sqrt{q} log$ $log$ $q$ by Montgomery and Vaughan, assuming the Generalized Riemann hypothesis GRH. For quadratic characters, this is known to be optimal, owing to an unconditional omega result due to Paley. In this talk, we shall present recent results on higher order character sums. In the first part, we discuss even order characters, in which case we obtain optimal omega results for $M(\chi)$, extending and refining Paley's construction. The second part, joint with Alexander Mangerel, will be devoted to the more interesting case of odd order characters, where we build on previous works of Granville and Soundararajan and of Goldmakher to provide further improvements of the Pólya-Vinogradov and Montgomery-Vaughan bounds in this case. In particular, assuming GRH, we are able to determine the order of magnitude of the maximum of $M(\chi)$, when $\chi$ has odd order $g \geq 3$ and conductor $q$, up to a power of $log_4 q$ (where $log_4$ is the fourth iterated logarithm).
For a non-principal Dirichlet character $\chi$ modulo $q$, the classical Pólya-Vinogradov inequality asserts that
$M (\chi) := \underset{x}{max}$$| \sum_{n \leq x}$$\chi(n)| = O (\sqrt{q} log$ $q)$.
This was improved to $\sqrt{q} log$ $log$ $q$ by Montgomery and Vaughan, assuming the Generalized Riemann hypothesis GRH. For quadratic characters, this is known to be optimal, owing to an unconditional omega result due to Paley. In this talk, we ...

11L40 ; 11N37 ; 11N13 ; 11M06

Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy
$ \sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$
is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, Ostrowski and Kesten characterized the intervals with this property.
We will discuss the bounded remainder property for sets in higher dimensions. In particular, we will see that parallelotopes spanned by vectors in $\mathbb{Z}\alpha + \mathbb{Z}^d$ have bounded remainder. Moreover, we show that this condition can be established by exploiting a connection between irrational rotation on $\mathbb{T}^d$ and certain cut-and-project sets. If time allows, we will discuss bounded remainder sets for the continuous irrational rotation $\lbrace t \alpha : t$ $\epsilon$ $\mathbb{R}^+\rbrace$ in two dimensions.
Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy
$ \sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$
is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, ...

11K38 ; 11J71 ; 11K06

Given a subset A of an additive group, how small can the sumset $A+A = \lbrace a+a' : a, a' \epsilon$ $A \rbrace$ be ? And what can be said about the structure of $A$ when $A + A$ is very close to the smallest possible size ? The aim of this talk is to partially answer these two questions when A is either a subset of $\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{R}$ or $\mathbb{T}$ and to explain how in this problem discrete and continuous setting are linked. This should also illustrate two important principles in additive combinatorics : reduction and rectification.
This talk is partially based on some joint work with Pablo Candela and some other work with Paul Péringuey.
Given a subset A of an additive group, how small can the sumset $A+A = \lbrace a+a' : a, a' \epsilon$ $A \rbrace$ be ? And what can be said about the structure of $A$ when $A + A$ is very close to the smallest possible size ? The aim of this talk is to partially answer these two questions when A is either a subset of $\mathbb{Z}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{R}$ or $\mathbb{T}$ and to explain how in this problem discrete and continuous ...

11B13 ; 11B83 ; 11B75

Nuage de mots clefs ici

Z