F Nous contacter


0

Documents : Single angle  | enregistrements trouvés : 34

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various questions in number theory may be viewed in probabilistic terms. For instance, consider the prime number theorem, which states that, as $x\rightarrow \infty$ , one has
$\#\left \{ primes\, p\leq x \right \}\sim \frac{x}{\log x}$
This may be seen as saying that the heuristic "probability" that a number $p$ is prime is about $1/\log p$. This viewpoint immediately predicts the correct order of magnitude for the twin prime conjecture. Indeed, if $p$ and $p+2$ are seen as two randomly chosen numbers of size around $t$, then the probability that they are both prime should be about $1/(\log t)^2$, which predicts that
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \}\asymp \int_{2}^{x}\frac{1}{(\log t)^2}dt \sim \frac{x}{\log x}$
In this naive heuristic, the events "$p$  is prime" and "$p+2$ is prime" have been treated as independent, which they are not (for instance their reductions modulo 2 are certainly not independent). Using more careful probabilistic reasoning, one can correct this and arrive at the precise conjecture
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \} \sim C_{twin}\frac{x}{(\log x)^2}$,
where $C_{twin}$  is the constant of Hardy-Littlewood.
In these lectures, we will use probabilistic considerations to study statistics of data attached to elliptic curves. Specifically, fix an elliptic curve $E$  over $\mathbb{Q}$ of conductor $N_E$. For a prime $p$ of good reduction, theFrobenius trace $a_p(E)$ and Weil $p$-root $\pi _p(E)\in \mathbb{C}$ satisfy the relations
$\#E(\mathbb{F}_p)=p+1-a_p(E)$,
$X^2-a_p(E)X+p=(X-\pi _p(E))(X-\overline{ \pi _p(E)})$.
Because of their connection via the Birch and Swinnerton-Dyer conjecture to ranks of elliptic curves (amongother reasons), there is general interest in understanding the statistical variation of the numbers $a_p(E)$ and $\pi_p(E)$, as $p$ varies over primes of good reduction for E. In their 1976 monograph, Lang and Trotter considered the following two fundamental counting functions:
$\pi_{E,r}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, a_p(E)=r \right \}$
$\pi_{E,K}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, \mathbb{Q}(\pi_p(E))=K \right \}$,
where $ r \in \mathbb{Z}$ is a fixed integer, $K$ is a fixed imaginary quadratic field. We will discuss their probabilistic model, which incorporates both the Chebotarev theorem for the division fields of $E$ and the Sato-Tatedistribution, leading to the precise (conjectural) asymptotic formulas
(1) $\pi_{E,r}(x)\sim C_{E,r}\frac{\sqrt{x}}{\log x}$
$\pi_{E,K}(x)\sim C_{E,K}\frac{\sqrt{x}}{\log x}$,
with explicit constants$C_{E,r}\geq 0$ and $C_{E,K} > 0$. We will also discuss heuristics leading to the conjectureof Koblitz on the primality of $\#E( \mathbb{F}_p)$, and of Jones, which combines these with the model of Lang-Trotter for $\pi_{E,r}(x)$ in order to count amicable pairs and aliquot cycles for elliptic curves as introduced by Silvermanand Stange.
The above-mentioned conjectures are all open, although (in addition to the bounds mentioned in the previous section) there are various average results which give evidence of their validity. For instance, let $R\geq 1$ and $S\geq 1$be an arbitrary positive length andwidth, respectively, and define
$\mathcal{F}(R,S):= \{ E_{r,s}:(r,s)\in \mathbb{Z}^2,-16(4r^3+27s^2)\neq 0, \left | r \right |\leq R\: $ and $\left | s \right | \leq S \}$,
where $E_{r,s}$ denotes the curve with equation $y^2=x^3+rx=s$. The work of Fouvry and Murty $(r=0)$, and of David and Pappalardi $(r\neq 0)$, shows that, provided min $\left \{ R(x), S(x) \right \}\geq x^{1+\varepsilon }$, one has
(2) $\frac{1}{\left |\mathcal{F}(R(x),S(x)) \right |} \sum_{E\in \mathcal{F}(R(x),S(x))} \pi_{E,r}(x) \sim C_r \frac{\sqrt{x}}{\log x}$
where $C_r$ is a constant. We will survey this and other theorems on average, and then discuss the nature of the associated constants $C_{E,r},C_{E,K}$ etc. We will discuss the statistical variation of these constants as $E$ varies over all elliptic curves over $\mathbb{Q}$, and use this to confirm the consistency of (2) with (1), on the level of the constants

Keywords : Galois representation - elliptic curve - trace of Frobenius - Chebotarev density theorem - Sato-Tate conjecture - Lang-Trotter conjecture
In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various ...

11G05 ; 11R44

Overview of the generalized Sato-Tate conjecture with lots of explicit examples. Preliminary discussion of L-polynomial distributions, Sato-Tate groups, and moment sequences. Presentation of the main results in genus 2.
Sato-Tate - Abelian surfaces - Abelian threefolds - hyperelliptic curves

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

In this third lecture the ideal and extended magnetohydrodynamics (MHD) fluid moment descriptions of magnetized plasmas are discussed first. The ideal MHD equilibrium in a toroidally axisymmetric tokamak plasma is discussed next. Then, the collisional viscous force closure moments and their effects on the parallel Ohm's law and poloidal flows in the extended MHD model of tokamak plasmas are discussed. Finally, the species fluid moment equations are transformed to magnetic flux coordinates, averaged over a flux surface and used to obtain the tokamak plasma transport equations. These equations describe the transport of the plasma electron density, plasma toroidal angular momentum and pressure of the electron and ion species "radially" across the nested tokamak toroidal magnetic flux surfaces. In this third lecture the ideal and extended magnetohydrodynamics (MHD) fluid moment descriptions of magnetized plasmas are discussed first. The ideal MHD equilibrium in a toroidally axisymmetric tokamak plasma is discussed next. Then, the collisional viscous force closure moments and their effects on the parallel Ohm's law and poloidal flows in the extended MHD model of tokamak plasmas are discussed. Finally, the species fluid moment equations ...

76X05 ; 82C70

In this final, fourth lecture the many effects on radial tokamak plasma transport caused by various physical processes are noted first: transients, collision- and microturbulence-induced transport, sources and sinks, and small three-dimensional (3-D) magnetic field perturbations. The main focus of this lecture is on the various effects of small 3-D fields on plasma transport which is a subject that has come of age over the past decade. Finally, the major themes of these CEMRACS 2014 lectures are summarized and a general framework for combining extended MHD, hybrid kinetic/fluid and transport models of tokamak plasma behavior into unified descriptions and numerical simulations that may be able to provide a "predictive capability" for ITER plasmas is presented. In this final, fourth lecture the many effects on radial tokamak plasma transport caused by various physical processes are noted first: transients, collision- and microturbulence-induced transport, sources and sinks, and small three-dimensional (3-D) magnetic field perturbations. The main focus of this lecture is on the various effects of small 3-D fields on plasma transport which is a subject that has come of age over the past decade. Finally, ...

76X05 ; 82C70

Single angle  Moment sequences of Sato-Tate groups
Sutherland, Andrew (Auteur de la Conférence) | CIRM (Editeur )

Moment sequences as a tool for identifying and classifying Sato-Tate distributions. Computing moment sequences of Sato-Tate groups, Weyl integration formulas, comparing moment statistics, distinguishing exceptional distributions with additional statistics.
Sato-Tate - Abelian surfaces - Abelian threefolds - hyperelliptic curves

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Single angle  Computing Sato-Tate statistics
Sutherland, Andrew (Auteur de la Conférence) | CIRM (Editeur )

Survey of methods for computing zeta functions of low genus curves, including generic group algorithms, p-adic cohomology, CRT-based methods (Schoof-Pila), and recent average polynomial-time algorithms.
Sato-Tate - Abelian surfaces - Abelian threefolds - hyperelliptic curves

11Y16 ; 11G10 ; 11G20 ; 14G10 ; 14K15

We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...

11G20 ; 14G15 ; 14H52

We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...

11G20 ; 14G15 ; 14H52

We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...

11G20 ; 14G15 ; 14H52

In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various questions in number theory may be viewed in probabilistic terms. For instance, consider the prime number theorem, which states that, as $x\rightarrow \infty$ , one has
$\#\left \{ primes\, p\leq x \right \}\sim \frac{x}{\log x}$
This may be seen as saying that the heuristic "probability" that a number $p$ is prime is about $1/\log p$. This viewpoint immediately predicts the correct order of magnitude for the twin prime conjecture. Indeed, if $p$ and $p+2$ are seen as two randomly chosen numbers of size around $t$, then the probability that they are both prime should be about $1/(\log t)^2$, which predicts that
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \}\asymp \int_{2}^{x}\frac{1}{(\log t)^2}dt \sim \frac{x}{\log x}$
In this naive heuristic, the events "$p$  is prime" and "$p+2$ is prime" have been treated as independent, which they are not (for instance their reductions modulo 2 are certainly not independent). Using more careful probabilistic reasoning, one can correct this and arrive at the precise conjecture
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \} \sim C_{twin}\frac{x}{(\log x)^2}$,
where $C_{twin}$  is the constant of Hardy-Littlewood.
In these lectures, we will use probabilistic considerations to study statistics of data attached to elliptic curves. Specifically, fix an elliptic curve $E$  over $\mathbb{Q}$ of conductor $N_E$. For a prime $p$ of good reduction, theFrobenius trace $a_p(E)$ and Weil $p$-root $\pi _p(E)\in \mathbb{C}$ satisfy the relations
$\#E(\mathbb{F}_p)=p+1-a_p(E)$,
$X^2-a_p(E)X+p=(X-\pi _p(E))(X-\overline{ \pi _p(E)})$.
Because of their connection via the Birch and Swinnerton-Dyer conjecture to ranks of elliptic curves (amongother reasons), there is general interest in understanding the statistical variation of the numbers $a_p(E)$ and $\pi_p(E)$, as $p$ varies over primes of good reduction for E. In their 1976 monograph, Lang and Trotter considered the following two fundamental counting functions:
$\pi_{E,r}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, a_p(E)=r \right \}$
$\pi_{E,K}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, \mathbb{Q}(\pi_p(E))=K \right \}$,
where $ r \in \mathbb{Z}$ is a fixed integer, $K$ is a fixed imaginary quadratic field. We will discuss their probabilistic model, which incorporates both the Chebotarev theorem for the division fields of $E$ and the Sato-Tatedistribution, leading to the precise (conjectural) asymptotic formulas
(1) $\pi_{E,r}(x)\sim C_{E,r}\frac{\sqrt{x}}{\log x}$
$\pi_{E,K}(x)\sim C_{E,K}\frac{\sqrt{x}}{\log x}$,
with explicit constants$C_{E,r}\geq 0$ and $C_{E,K} > 0$. We will also discuss heuristics leading to the conjectureof Koblitz on the primality of $\#E( \mathbb{F}_p)$, and of Jones, which combines these with the model of Lang-Trotter for $\pi_{E,r}(x)$ in order to count amicable pairs and aliquot cycles for elliptic curves as introduced by Silvermanand Stange.
The above-mentioned conjectures are all open, although (in addition to the bounds mentioned in the previous section) there are various average results which give evidence of their validity. For instance, let $R\geq 1$ and $S\geq 1$be an arbitrary positive length andwidth, respectively, and define
$\mathcal{F}(R,S):= \{ E_{r,s}:(r,s)\in \mathbb{Z}^2,-16(4r^3+27s^2)\neq 0, \left | r \right |\leq R\: $ and $\left | s \right | \leq S \}$,
where $E_{r,s}$ denotes the curve with equation $y^2=x^3+rx=s$. The work of Fouvry and Murty $(r=0)$, and of David and Pappalardi $(r\neq 0)$, shows that, provided min $\left \{ R(x), S(x) \right \}\geq x^{1+\varepsilon }$, one has
(2) $\frac{1}{\left |\mathcal{F}(R(x),S(x)) \right |} \sum_{E\in \mathcal{F}(R(x),S(x))} \pi_{E,r}(x) \sim C_r \frac{\sqrt{x}}{\log x}$
where $C_r$ is a constant. We will survey this and other theorems on average, and then discuss the nature of the associated constants $C_{E,r},C_{E,K}$ etc. We will discuss the statistical variation of these constants as $E$ varies over all elliptic curves over $\mathbb{Q}$, and use this to confirm the consistency of (2) with (1), on the level of the constants


Keywords : Galois representation - elliptic curve - trace of Frobenius - Chebotarev density theorem - Sato-Tate conjecture - Lang-Trotter conjecture
In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various ...

11G05 ; 11R44

In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various questions in number theory may be viewed in probabilistic terms. For instance, consider the prime number theorem, which states that, as $x\rightarrow \infty$ , one has
$\#\left \{ primes\, p\leq x \right \}\sim \frac{x}{\log x}$
This may be seen as saying that the heuristic "probability" that a number $p$ is prime is about $1/\log p$. This viewpoint immediately predicts the correct order of magnitude for the twin prime conjecture. Indeed, if $p$ and $p+2$ are seen as two randomly chosen numbers of size around $t$, then the probability that they are both prime should be about $1/(\log t)^2$, which predicts that
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \}\asymp \int_{2}^{x}\frac{1}{(\log t)^2}dt \sim \frac{x}{\log x}$
In this naive heuristic, the events "$p$  is prime" and "$p+2$ is prime" have been treated as independent, which they are not (for instance their reductions modulo 2 are certainly not independent). Using more careful probabilistic reasoning, one can correct this and arrive at the precise conjecture
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \} \sim C_{twin}\frac{x}{(\log x)^2}$,
where $C_{twin}$  is the constant of Hardy-Littlewood.
In these lectures, we will use probabilistic considerations to study statistics of data attached to elliptic curves. Specifically, fix an elliptic curve $E$  over $\mathbb{Q}$ of conductor $N_E$. For a prime $p$ of good reduction, theFrobenius trace $a_p(E)$ and Weil $p$-root $\pi _p(E)\in \mathbb{C}$ satisfy the relations
$\#E(\mathbb{F}_p)=p+1-a_p(E)$,
$X^2-a_p(E)X+p=(X-\pi _p(E))(X-\overline{ \pi _p(E)})$.
Because of their connection via the Birch and Swinnerton-Dyer conjecture to ranks of elliptic curves (amongother reasons), there is general interest in understanding the statistical variation of the numbers $a_p(E)$ and $\pi_p(E)$, as $p$ varies over primes of good reduction for E. In their 1976 monograph, Lang and Trotter considered the following two fundamental counting functions:
$\pi_{E,r}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, a_p(E)=r \right \}$
$\pi_{E,K}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, \mathbb{Q}(\pi_p(E))=K \right \}$,
where $ r \in \mathbb{Z}$ is a fixed integer, $K$ is a fixed imaginary quadratic field. We will discuss their probabilistic model, which incorporates both the Chebotarev theorem for the division fields of $E$ and the Sato-Tatedistribution, leading to the precise (conjectural) asymptotic formulas
(1) $\pi_{E,r}(x)\sim C_{E,r}\frac{\sqrt{x}}{\log x}$
$\pi_{E,K}(x)\sim C_{E,K}\frac{\sqrt{x}}{\log x}$,
with explicit constants$C_{E,r}\geq 0$ and $C_{E,K} > 0$. We will also discuss heuristics leading to the conjectureof Koblitz on the primality of $\#E( \mathbb{F}_p)$, and of Jones, which combines these with the model of Lang-Trotter for $\pi_{E,r}(x)$ in order to count amicable pairs and aliquot cycles for elliptic curves as introduced by Silvermanand Stange.
The above-mentioned conjectures are all open, although (in addition to the bounds mentioned in the previous section) there are various average results which give evidence of their validity. For instance, let $R\geq 1$ and $S\geq 1$be an arbitrary positive length andwidth, respectively, and define
$\mathcal{F}(R,S):= \{ E_{r,s}:(r,s)\in \mathbb{Z}^2,-16(4r^3+27s^2)\neq 0, \left | r \right |\leq R\: $ and $\left | s \right | \leq S \}$,
where $E_{r,s}$ denotes the curve with equation $y^2=x^3+rx=s$. The work of Fouvry and Murty $(r=0)$, and of David and Pappalardi $(r\neq 0)$, shows that, provided min $\left \{ R(x), S(x) \right \}\geq x^{1+\varepsilon }$, one has
(2) $\frac{1}{\left |\mathcal{F}(R(x),S(x)) \right |} \sum_{E\in \mathcal{F}(R(x),S(x))} \pi_{E,r}(x) \sim C_r \frac{\sqrt{x}}{\log x}$
where $C_r$ is a constant. We will survey this and other theorems on average, and then discuss the nature of the associated constants $C_{E,r},C_{E,K}$ etc. We will discuss the statistical variation of these constants as $E$ varies over all elliptic curves over $\mathbb{Q}$, and use this to confirm the consistency of (2) with (1), on the level of the constants


Keywords : Galois representation - elliptic curve - trace of Frobenius - Chebotarev density theorem - Sato-Tate conjecture - Lang-Trotter conjecture
In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various ...

11G05 ; 11R44

In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$.
Using the Chebotarev density theorem for the extensions $K_\ell/\mathbb{Q}$ associated to a given curve $E$, we can study various sequences associated to the reductions of a global curve $E/(\mathbb{Q}$, as the sequences
$\left \{\#E(\mathbb{F}_p)=p+1-a_p(E)\right \}_{p\: primes}, or \left \{ a_p(E)=r \right \}_{p\: primes}$
for some fixed value $r\in \mathbb{Z}$. For example, if  $\pi_{E,r}(x)= \#\left \{ p\leq x : a_p(E)=r \right \}$,
then it was shown by Serre and K. Murty, R. Murty and Saradha that under the GRH,
$\pi_{E,r}(x)\ll x^{4/5} log^{-1/5}x$, for all $r\in \mathbb{Z}$, and $ \pi_{E,0}(x)\ll x^{3/4}$.
There are also some weaker bounds without the GRH. Some other sequences may also be treated by apply-ing the Chebotarev density theorem to other extensions of $\mathbb{Q} $ as the ones coming from the "mixed Galois representations" associated to $E[\ell]$ and a given quadratic field $K$  which can be used to get upper bounds onthe number of primes $p$ such that End $(E/\mathbb{F}_p)\bigotimes \mathbb{Q}$  is isomorphic to a given quadratic imaginary field $K$ .
We will also explain how the densities obtained from the Cheboratev density theorem can be used togetherwith sieve techniques. For a first application, we consider a conjecture of Koblitz which predicts that
$\pi_{E}^{twin}(x):=\#\left \{ p\leq x : p+1-a_p(E)\, is\, prime \right \}\sim C_{E}^{twin}\frac{x}{log^2x}$
This is analogue to the classical twin prime conjecture, and the constant $C_{E}^{twin}$  can be explicitly writtenas an Euler product like the twin prime constant. We explain how classical sieve techniques can be usedto show that under the GRH, there are at least 2.778 $C_{E}^{twin}x/log^2x$ primes $p$ such that $p+1-a_p(E)^2$ has at most 8 prime factors, counted with multiplicity. We also explain some possible generalisation of Koblitz conjectures which could be treated by similar techniques given some explicitversions (i.e. with explicit error terms) of density theorems existing in the literature.
Other examples of sieving using the Chebotarev density theorem in the context of elliptic curves are thegeneralisations of Hooley's proof of the Artin's conjecture on primitive roots (again under the GRH).Using a similar techniques, but replacing the cyclotomic fields by the $\ell$-division fields $K_\ell$  of a given elliptic curve $E/\mathbb{Q}$, Serre showed that there is a positive proportion of primes $p$ such that the group $E(\mathbb{F}_p)$ is cyclic (when $E$ does not have a rational 2-torsion point). This was generalised by Cojocaru and Duke, and is also related to counting square-free elements of the sequence $a_p(E)^2-4p$,,which still resists a proof with the same techniques (without assuming results stronger than the GRH).
Finally, we also discuss some new distribution questions related to elliptic curves that are very similar to the questions that could be attacked with the Chebotarev density theorem, but are still completely open(for example, no non-trivial upper bounds exists). The first question was first considered by Silverman and Stange who defined an amicable pair of an elliptic curve $E/\mathbb{Q}$  to be a pair of primes $(p,q)$ such that
$p+1-a_p(E)=q$, and $q+1-a_q(E)=p$.
They predicted that the number of such pairs should be about $\sqrt{x}/log^2x$ for elliptic curves without complex multiplication. A precise conjecture with an explicit asymptotic was made by Jones, who also provided numerical evidence for his conjecture. Among the few results existing in the literature for thisquestion is the work of Parks who gave an upper bound of the correct order of magnitude for the average number (averaging over all elliptic curves) of amicable pairs (and aliquot cycles which are cycles of length $L$). But a non-trivial upper bound for a single elliptic curve is still not known.
Another completely open question is related to "champion primes", which are primes $p$ such that $\#E(\mathbb{F}_p)$ is maximal, i.e. $a_p(E)=-[2\sqrt{p}]$. (This terminology was used for the first time by Hedetniemi, James andXue). In some work in progress with Wu, we make a conjecture and give some evidence for the number of champion primes associated to a given elliptic curve using the Sato-Tate conjecture (for verysmall intervals depending on $p$ i.e. in a range where the conjecture is still open). Again, this question iscompletely open, and there are no known non-trivial upper bound. There is also no numerical evidence for this question, and it would be nice to have some, possibly for more general "champion primes", for examplelooking at $a_p(E)$ in a small interval of length $p^\varepsilon$ around $-[2\sqrt{p}]$.
In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2...

11G05 ; 11N36 ; 11F80

In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$.
Using the Chebotarev density theorem for the extensions $K_\ell/\mathbb{Q}$ associated to a given curve $E$, we can study various sequences associated to the reductions of a global curve $E/(\mathbb{Q}$, as the sequences
$\left \{\#E(\mathbb{F}_p)=p+1-a_p(E)\right \}_{p\: primes}, or \left \{ a_p(E)=r \right \}_{p\: primes}$
for some fixed value $r\in \mathbb{Z}$. For example, if  $\pi_{E,r}(x)= \#\left \{ p\leq x : a_p(E)=r \right \}$,
then it was shown by Serre and K. Murty, R. Murty and Saradha that under the GRH,
$\pi_{E,r}(x)\ll x^{4/5} log^{-1/5}x$, for all $r\in \mathbb{Z}$, and $ \pi_{E,0}(x)\ll x^{3/4}$.
There are also some weaker bounds without the GRH. Some other sequences may also be treated by apply-ing the Chebotarev density theorem to other extensions of $\mathbb{Q} $ as the ones coming from the "mixed Galois representations" associated to $E[\ell]$ and a given quadratic field $K$  which can be used to get upper bounds onthe number of primes $p$ such that End $(E/\mathbb{F}_p)\bigotimes \mathbb{Q}$  is isomorphic to a given quadratic imaginary field $K$ .
We will also explain how the densities obtained from the Cheboratev density theorem can be used togetherwith sieve techniques. For a first application, we consider a conjecture of Koblitz which predicts that
$\pi_{E}^{twin}(x):=\#\left \{ p\leq x : p+1-a_p(E)\, is\, prime \right \}\sim C_{E}^{twin}\frac{x}{log^2x}$
This is analogue to the classical twin prime conjecture, and the constant $C_{E}^{twin}$  can be explicitly writtenas an Euler product like the twin prime constant. We explain how classical sieve techniques can be usedto show that under the GRH, there are at least 2.778 $C_{E}^{twin}x/log^2x$ primes $p$ such that $p+1-a_p(E)^2$ has at most 8 prime factors, counted with multiplicity. We also explain some possible generalisation of Koblitz conjectures which could be treated by similar techniques given some explicitversions (i.e. with explicit error terms) of density theorems existing in the literature.
Other examples of sieving using the Chebotarev density theorem in the context of elliptic curves are thegeneralisations of Hooley's proof of the Artin's conjecture on primitive roots (again under the GRH).Using a similar techniques, but replacing the cyclotomic fields by the $\ell$-division fields $K_\ell$  of a given elliptic curve $E/\mathbb{Q}$, Serre showed that there is a positive proportion of primes $p$ such that the group $E(\mathbb{F}_p)$ is cyclic (when $E$ does not have a rational 2-torsion point). This was generalised by Cojocaru and Duke, and is also related to counting square-free elements of the sequence $a_p(E)^2-4p$,,which still resists a proof with the same techniques (without assuming results stronger than the GRH).
Finally, we also discuss some new distribution questions related to elliptic curves that are very similar to the questions that could be attacked with the Chebotarev density theorem, but are still completely open(for example, no non-trivial upper bounds exists). The first question was first considered by Silverman and Stange who defined an amicable pair of an elliptic curve $E/\mathbb{Q}$  to be a pair of primes $(p,q)$ such that
$p+1-a_p(E)=q$, and $q+1-a_q(E)=p$.
They predicted that the number of such pairs should be about $\sqrt{x}/log^2x$ for elliptic curves without complex multiplication. A precise conjecture with an explicit asymptotic was made by Jones, who also provided numerical evidence for his conjecture. Among the few results existing in the literature for thisquestion is the work of Parks who gave an upper bound of the correct order of magnitude for the average number (averaging over all elliptic curves) of amicable pairs (and aliquot cycles which are cycles of length $L$). But a non-trivial upper bound for a single elliptic curve is still not known.
Another completely open question is related to "champion primes", which are primes $p$ such that $\#E(\mathbb{F}_p)$ is maximal, i.e. $a_p(E)=-[2\sqrt{p}]$. (This terminology was used for the first time by Hedetniemi, James andXue). In some work in progress with Wu, we make a conjecture and give some evidence for the number of champion primes associated to a given elliptic curve using the Sato-Tate conjecture (for verysmall intervals depending on $p$ i.e. in a range where the conjecture is still open). Again, this question iscompletely open, and there are no known non-trivial upper bound. There is also no numerical evidence for this question, and it would be nice to have some, possibly for more general "champion primes", for examplelooking at $a_p(E)$ in a small interval of length $p^\varepsilon$ around $-[2\sqrt{p}]$.
In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2...

11G05 ; 11N36 ; 11F80

In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$.
Using the Chebotarev density theorem for the extensions $K_\ell/\mathbb{Q}$ associated to a given curve $E$, we can study various sequences associated to the reductions of a global curve $E/(\mathbb{Q}$, as the sequences
$\left \{\#E(\mathbb{F}_p)=p+1-a_p(E)\right \}_{p\: primes}, or \left \{ a_p(E)=r \right \}_{p\: primes}$
for some fixed value $r\in \mathbb{Z}$. For example, if 
$\pi_{E,r}(x)= \#\left \{ p\leq x : a_p(E)=r \right \}$,
then it was shown by Serre and K. Murty, R. Murty and Saradha that under the GRH,
$\pi_{E,r}(x)\ll x^{4/5} log^{-1/5}x$, for all $r\in \mathbb{Z}$, and $ \pi_{E,0}(x)\ll x^{3/4}$.
There are also some weaker bounds without the GRH. Some other sequences may also be treated by apply-ing the Chebotarev density theorem to other extensions of $\mathbb{Q} $ as the ones coming from the "mixed Galois representations" associated to $E[\ell]$ and a given quadratic field $K$  which can be used to get upper bounds onthe number of primes $p$ such that End $(E/\mathbb{F}_p)\bigotimes \mathbb{Q}$  is isomorphic to a given quadratic imaginary field $K$ .
We will also explain how the densities obtained from the Cheboratev density theorem can be used togetherwith sieve techniques. For a first application, we consider a conjecture of Koblitz which predicts that
$\pi_{E}^{twin}(x):=\#\left \{ p\leq x : p+1-a_p(E)\, is\, prime \right \}\sim C_{E}^{twin}\frac{x}{log^2x}$
This is analogue to the classical twin prime conjecture, and the constant $C_{E}^{twin}$  can be explicitly writtenas an Euler product like the twin prime constant. We explain how classical sieve techniques can be usedto show that under the GRH, there are at least 2.778 $C_{E}^{twin}x/log^2x$ primes $p$ such that $p+1-a_p(E)^2$ has at most 8 prime factors, counted with multiplicity. We also explain some possible generalisation of Koblitz conjectures which could be treated by similar techniques given some explicitversions (i.e. with explicit error terms) of density theorems existing in the literature.
Other examples of sieving using the Chebotarev density theorem in the context of elliptic curves are thegeneralisations of Hooley's proof of the Artin's conjecture on primitive roots (again under the GRH).Using a similar techniques, but replacing the cyclotomic fields by the $\ell$-division fields $K_\ell$  of a given elliptic curve $E/\mathbb{Q}$, Serre showed that there is a positive proportion of primes $p$ such that the group $E(\mathbb{F}_p)$ is cyclic (when $E$ does not have a rational 2-torsion point). This was generalised by Cojocaru and Duke, and is also related to counting square-free elements of the sequence $a_p(E)^2-4p$,,which still resists a proof with the same techniques (without assuming results stronger than the GRH).
Finally, we also discuss some new distribution questions related to elliptic curves that are very similar to the questions that could be attacked with the Chebotarev density theorem, but are still completely open(for example, no non-trivial upper bounds exists). The first question was first considered by Silverman and Stange who defined an amicable pair of an elliptic curve $E/\mathbb{Q}$  to be a pair of primes $(p,q)$ such that
$p+1-a_p(E)=q$, and $q+1-a_q(E)=p$.
They predicted that the number of such pairs should be about $\sqrt{x}/log^2x$ for elliptic curves without complex multiplication. A precise conjecture with an explicit asymptotic was made by Jones, who also provided numerical evidence for his conjecture. Among the few results existing in the literature for thisquestion is the work of Parks who gave an upper bound of the correct order of magnitude for the average number (averaging over all elliptic curves) of amicable pairs (and aliquot cycles which are cycles of length $L$). But a non-trivial upper bound for a single elliptic curve is still not known.
Another completely open question is related to "champion primes", which are primes $p$ such that $\#E(\mathbb{F}_p)$ is maximal, i.e. $a_p(E)=-[2\sqrt{p}]$. (This terminology was used for the first time by Hedetniemi, James andXue). In some work in progress with Wu, we make a conjecture and give some evidence for the number of champion primes associated to a given elliptic curve using the Sato-Tate conjecture (for verysmall intervals depending on $p$ i.e. in a range where the conjecture is still open). Again, this question iscompletely open, and there are no known non-trivial upper bound. There is also no numerical evidence for this question, and it would be nice to have some, possibly for more general "champion primes", for examplelooking at $a_p(E)$ in a small interval of length $p^\varepsilon$ around $-[2\sqrt{p}]$.
In all the following, let an elliptic curve $E$ defined over $\mathbb{Q}$ without complex multiplication. For every prime $\ell$, let $E[\ell]= E[\ell](\overline{\mathbb{Q}})$ be the group of  $\ell$-torsion points of  $E$, and let $K_\ell$  be the field extension obtained from $\mathbb{Q}$ by adding the coordinates of the $\ell$-torsion points of $E $. This is a Galois extension of$\mathbb{Q}$ , andGal$(K_\ell/\mathbb{Q})\subseteq GL_2...

11G05 ; 11N36 ; 11F80

Single angle  The Chebotarev density theorem
Stevenhagen, Peter (Auteur de la Conférence) | CIRM (Editeur )

We explain Chebotarev's theorem, which is The Fundamental Tool in proving whatever densities we have for sets of prime numbers, try to understand what makes it hard in the case of ifinite extensions, and see why such extensions arise in the case of primitive root problems.

11R45

We study the entanglement of radical extensions over the rational numbers, and describe their Galois groups as subgroups of the full automorphism group of the multiplicative groups involved. A character sum argument then yields the densities (under GRH) for a wide class of primitive root problems in terms of simple 'local' computations.

11R45

Single angle  The generalized Sato-Tate conjecture
Fité, Francesc (Auteur de la Conférence) | CIRM (Editeur )

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Single angle  Sato-Tate axioms
Fité, Francesc (Auteur de la Conférence) | CIRM (Editeur )

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...

11M50 ; 11G10 ; 14G10 ; 14K15

Single angle  The Galois type of an Abelian surface
Fité, Francesc (Auteur de la Conférence) | CIRM (Editeur )

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

This talk presents some news on bilinear decompositions of the Möbius function. In particular, we will exhibit a family of such decompositions inherited from Motohashi's proof of the Hoheisel Theorem that leads to
$\sum_{n\leq X,(n,q)=1) }^{} \mu (n)e(na/q)\ll X\sqrt{q}/\varphi (q)$
for $q \leq X^{1/5}$ and any $a$ prime to $q$.

11N37 ; 11Y35 ; 11A25

Nuage de mots clefs ici

Z