F Nous contacter


0

Post-edited Beyond Endoscopy and elliptic terms in the trace formula

Auteurs : Arthur, James Greig (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
trace formula and endoscopy stabilization twisted stabilization comments on endoscopy Beyond Endoscopy premise primitization r-primitization comments on Beyond Endoscopy questions of the audience

Résumé : Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it pertains to these terms.

Codes MSC :
11F66 - Langlands L-functions; one variable Dirichlet series and functional equations
22E50 - Representations of Lie and linear algebraic groups over local fields
22E55 - Representations of Lie and linear algebraic groups over global fields and adèle rings

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 09/06/16
    Date de captation : 24/05/16
    Collection : Research talks
    Format : MP4 (.mp4) - HD
    Durée : 01:13:54
    Domaine : Lie Theory and Generalizations ; Number Theory
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2016-05-24_Arthur.mp4

Informations sur la rencontre

Nom du congrès : Jean-Morlet Chair: Relative trace formula, periods, L-functions and harmonic analysis / Chaire Jean-Morlet : Formule des traces relatives, périodes, fonctions L et analyse harmonique
Organisteurs Congrès : Chaudouard, Pierre-Henri ; Heiermann, Volker ; Prasad, Dipendra ; Sakellaridis, Yiannis
Dates : 23/05/16 - 27/05/16
Année de la rencontre : 2016
URL Congrès : http://prasad-heiermann.weebly.com/main-...

Citation Data

DOI : 10.24350/CIRM.V.18981203
Cite this video as: Arthur, James Greig (2016). Beyond Endoscopy and elliptic terms in the trace formula. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18981203
URI : http://dx.doi.org/10.24350/CIRM.V.18981203

Voir aussi

Bibliographie

  1. [1] Altug, S.A. (2015). Beyond endoscopy via the trace formula. I: Poisson summation and isolation of special representations. Compositio Mathematica, 151(10), 1791-1820 - http://dx.doi.org/10.1112/S0010437X15007320

  2. [2] Altug, S.A. (2015). Beyond endoscopy via the trace formula. II: Asymptotic expansions of Fourier transforms and bounds towards the Ramanujan conjecture. <arXiv:1506.08911> - http://arxiv.org/abs/1506.08911

  3. [3] Altug, S.A. (2015). Beyond endoscopy via the trace formula. III: The standard representation. <arXiv:1512.09249> - http://arxiv.org/abs/1512.09249

  4. [4] Arthug, James (2015). Problems Beyond Endoscopy. Preprint - http://www.math.toronto.edu/arthur/pdf/Arthur.pdf

  5. [5] Frenkel, E., Langlands, R., & Ngô, B.C. (2010). Trace formula and functionality: the beginnings of a program. Annales des Sciences Mathématiques du Québec, 34(2), 199-243 - https://www.zbmath.org/?q=an:1267.11113

  6. [6] Langlands, Robert P. (2004). Beyond endoscopy. In H. Hida, D. Ramakrishnan, & F. Shahidi (Eds.), Contributions to automorphic forms, geometry, and number theory (pp. 611-697). Baltimore, MD: Johns Hopkins University Press - https://www.zbmath.org/?q=an:1078.11033



Z