F Nous contacter


Post-edited On the isotropic nature of the possible blow up for 3D Navier-Stokes

Auteurs : Chemin, Jean-Yves (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
incompressible Navier-Stokes system scaling invariance local wellposedness blow up condition conservation of energy isotropic blow up vorticity horizontal Biot-Savart law Lp energy estimate anisotropic spaces propagation estimates use of divergence free condition mapping between Besov spaces

Résumé : The purpose of the talk will be the proof of the following result for the homogeneous incompressible Navier-Stokes system in dimension three: given an initial data $v_0$ with vorticity $\Omega_0= \nabla \times v_0$ in $L^{\tfrac{3}{2}}$ (which implies that $v_0$ belongs to the Sobolev space $H^{\tfrac{1}{2}}$ ), we prove that the solution $v$ given by the classical Fujita-Kato theorem blows up in a finite time $T^*$ only if, for any $p$ in ]4,6[ and any unit vector $e$ in $\mathbb{R}^3$ ; there holds
$\int_{0}^{T^*}\left \| v(t)\cdot e\right \|^p_{\frac{1}{2}+\frac{2}{p}}dt=\infty $.
We remark that all these quantities are scaling invariant under the scaling transformation of Navier-Stokes system.

Codes MSC :
35Q30 - Stokes and Navier-Stokes equations

Informations sur la rencontre

Nom du congrès : Vorticity, rotation and symmetry (III) - approaching limiting cases of fluid flows / Vorticité, rotation et symétrie (III) ­ analyse des situations limites en théorie des fluides
Organisteurs Congrès : Farwig, Reinhard ; Neustupa, Jiri ; Penel, Patrick
Dates : 05/05/14 - 09/05/14
Année de la rencontre : 2014

Citation Data

DOI : 10.24350/CIRM.V.18493103
Cite this video as: Chemin, Jean-Yves (2014). On the isotropic nature of the possible blow up for 3D Navier-Stokes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18493103
URI : http://dx.doi.org/10.24350/CIRM.V.18493103