F Nous contacter


0

Post-edited A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows

Auteurs : Furfaro, Damien (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
two-phase flow model the discrete equations method basis two-phase flow model rewriting locally constant interfacial variables local conservative formulation two-phase Riemann problem solver entropy preserving Godunov type scheme

Résumé : A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these initial data. The same is done for the interfacial pressure $P_I$. Interfacial variables $u_I$ and $P_I$ are thus local constants in the Riemann problem. Thanks to this property there is no difficulty to express the non-conservative system of partial differential equations in local conservative form. With the conventional HLLC wave speed estimates and the extra interfacial speed $u_I$, the four-waves Riemann problem for each phase is solved following the same strategy as in Toro et al. (1994) for the Euler equations. As $u_I$ and $P_I$ are functions only of the Riemann problem initial data, the two-phase Riemann problem consists in two independent Riemann problems with 4 waves only. Moreover, it is shown that these solvers are entropy producing. The method is easy to code and very robust. Its accuracy is validated against exact solutions as well as experimental data.

Codes MSC :
76Mxx - Basic methods in fluid mechanics, See also {65-XX}
76TXX - Two-phase and multiphase flows

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 26/08/14
    Date de captation : 21/08/14
    Collection : Research talks
    Format : QuickTime (.mov) Durée : 00:45:05
    Domaine : Mathematical Physics
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2014-08-21_Furfaro.mp4

Informations sur la rencontre

Nom du congrès : CEMRACS : Numerical modeling of plasmas / CEMRACS : Modèles numériques des plasmas
Organisteurs Congrès : Campos Pinto, Martin ; Charles, Frédérique ; Guillard, Hervé ; Nkonga, Boniface
Dates : 21/07/14 - 29/08/14
Année de la rencontre : 2014
URL Congrès : http://smai.emath.fr/cemracs/cemracs14/

Citation Data

DOI : 10.24350/CIRM.V.18557003
Cite this video as: Furfaro, Damien (2014). A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18557003
URI : http://dx.doi.org/10.24350/CIRM.V.18557003

Bibliographie

  1. R. Abgrall, R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures, J. Comput. Phys. 186 (2003), no. 2, pp. 361-396 - http://dx.doi.org/10.1016/s0021-9991(03)00011-1

  2. A. Ambroso, C. Chalons, P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow, Computers and Fluids 54 (2012) pp. 67­91 - http://dx.doi.org/10.1016/j.compfluid.2011.10.004

  3. N. Andrianov, G. Warnecke, The Riemann problem for the Baer­Nunziato model of two-phase flows, J. Comput. Phys. 195 (2004), no. 2, pp. 434-464 - http://dx.doi.org/10.1016/j.jcp.2003.10.006

  4. M. R. Baer, J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. Multiphase Flow 12 (1986), no. 6, pp. 861-889 - http://dx.doi.org/10.1016/0301-9322(86)90033-9

  5. R. R. Bernecker, D. Price, Studies in the transition from deflagration to detonation in granular explosives-III. Proposed mechanisms for transition and comparison with other proposals in the literature, Combust. Flame, 22 (1974), no. 2, pp. 161-170 - http://dx.doi.org/10.1016/s0010-2180(74)80003-9

  6. R. A. Berry, R. Saurel, O. Le Metayer, The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section, Nuclear Engineering and Design 240 (2010), no. 11, pp. 3797-3818 - http://dx.doi.org/10.1016/j.nucengdes.2010.08.003

  7. F. Bouchut, Conservative schemes, in Nonlinear stability of finite volume methods for hyperbolic conservation laws, Frontiers in Mathematics, Birkhäuser, 2004, ISBN: 978-3-7643-6665-0, pp. 13-64 - http://dx.doi.org/10.1007/978-3-7643-7792-2_2

  8. C-H. Chang, M-S. Liou, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme, J. Comput. Phys. 225 (2007), no. 1, pp. 840-873 - http://dx.doi.org/10.1016/j.jcp.2007.01.007

  9. A. Chinnayya, E. Daniel, R. Saurel, Computation of detonation waves in heterogeneous energetic materials, Journal of Computational Physics 196 (2004), no. 2, pp. 490-538 - http://dx.doi.org/10.1016/j.jcp.2003.11.015

  10. S. F. Davis, Simplified second-order Godunov-type methods. SIAM J. Sci. and Stat. Comput. 9 (1988), no. 3, pp. 445-473 - http://dx.doi.org/10.1137/0909030

  11. V. Deledicque, M.V. Papalexandris, An exact Riemann solver for compressible two-phase flow models containing non-conservative products, J. Comput. Phys. 222 (2007), no. 1, pp. 217-245 - http://dx.doi.org/10.1016/j.jcp.2006.07.025

  12. S. Ergun, Fluid flow through packed columns, Chem .Eng. Progress 48 (1952) -

  13. S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47(89), n°3 (1959), pp. 271­306 - http://mi.mathnet.ru/eng/msb4873

  14. A. Harten, P. Lax, B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review 25 (1983), no. 1, pp. 35-61 - http://dx.doi.org/10.1137/1025002

  15. A. K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids 13 (2001), no. 10, pp. 3002­3024 - http://dx.doi.org/10.1063/1.1398042

  16. M-H. Lallemand, R. Saurel, Pressure relaxation procedures for multiphase compressible flows, INRIA Report 4038 (2000) - http://hal.inria.fr/inria-00072600/PDF/RR-4038.pdf

  17. O. Le Metayer, J. Massoni, R. Saurel, Modeling evaporation fronts with reactive Riemann solvers, Journal of Computational Physics 205 (2005), no. 2, pp. 567-610 - http://dx.doi.org/10.1016/j.jcp.2004.11.021

  18. Q. Li, H. Feng, T. Cai, C. Hu, Difference scheme for two-phase flow, Applied Mathematics and Mechanics 25 (2004), no. 5, pp. 536-545 - http://dx.doi.org/10.1007/bf02437602

  19. S. Liang, W. Liu, L. Yuan, Solving seven-equation model for compressible two-phase flow using multiple GPUs, Computers & Fluids 99 (2014), pp. 156-171 - http://dx.doi.org/10.1016/j.compfluid.2014.04.021

  20. C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal. 44 (2006), no. 1, pp. 300-321 - http://dx.doi.org/10.1137/050628052

  21. F. Petitpas, E. Franquet, R. Saurel, & O. Le Metayer, A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks. Journal of Computational Physics, 225 (2007), no. 2, pp. 2214-2248 - http://dx.doi.org/10.1016/j.jcp.2007.03.014

  22. X. Rogue, G. Rodriguez, J.F. Haas, R. Saurel, Experimental and numerical investigation of the shock-induced fluidization of a particle bed, Shock Waves, 8 (1998), no. 1, pp. 29-45 - http://dx.doi.org/10.1007/s001930050096

  23. R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), no. 2, pp. 425-467 - http://dx.doi.org/10.1006/jcph.1999.6187

  24. R. Saurel, S. Gavrilyuk, F. Renaud, A multiphase model with internal degrees of freedom: application to shock­bubble interaction, Journal of Fluid Mechanics 495 (2003), pp 283-321 - http://dx.doi.org/10.1017/s002211200300630x

  25. R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (2007), no. 3, pp. 209-232 - http://dx.doi.org/10.1007/s00193-006-0065-7

  26. R. Saurel, F. Petitpas, R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys. 228 (2009), no. 5, pp. 1678-1712 - http://dx.doi.org/10.1016/j.jcp.2008.11.002

  27. D.W. Schwendeman, C.W. Wahle, A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys. 212 (2006), no. 2, pp. 490-526 - http://dx.doi.org/10.1016/j.jcp.2005.07.012

  28. S. Tokareva, E. F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys. 229 (2010), no. 10, pp. 3573-3604 - http://dx.doi.org/10.1016/j.jcp.2010.01.016

  29. E. F. Toro, A weighted average flux method for hyperbolic conservation laws. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 423, num 1865 (1989), no. 1865, pp. 401-418 - http://dx.doi.org/10.1098/rspa.1989.0062

  30. E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves 4 (1994), no. 1, pp. 25-34 - http://dx.doi.org/10.1007/bf01414629

  31. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, 1997, ISBN: 978-3-662-03492-7 - http://dx.doi.org/10.1007/978-3-662-03490-3

  32. B. Van Leer, Toward the ultimate conservation difference scheme V, A second order sequel to Godunov's method. J Comput Phys 32 (1979), no. 1, pp. 101-136 - http://dx.doi.org/10.1016/0021-9991(79)90145-1

  33. A. Zein, M. Hantke, G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys. 229 (2010), no. 8, pp. 2964-2998 - http://dx.doi.org/10.1016/j.jcp.2009.12.026



Z