m

F Nous contacter


0
     
Post-edited

Post-edited The Weil algebra of a Hopf algebra

Auteurs : Dubois-Violette, Michel (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
Cartan operations algebraic connections Weil algebra of a Lie algebra Weil homomorphism Cartan map operations of Hopf algebras connection on operation of Hopf algebras differential envelope of graded algebra Weil algebra of Hopf algebra

Résumé : We give a summary of a joint work with Giovanni Landi (Trieste University) on a non commutative generalization of Henri Cartan's theory of operations, algebraic connections and Weil algebra.

Codes MSC :
81R10 - Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, W-algebras and other current algebras and their representations [See also 17B65, 17B67, 22E65, 22E67, 22E70]
81R60 - Noncommutative geometry
16T05 - Hopf algebras and their applications

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 11/12/14
    Date de captation : 02/12/14
    Collection : Research talks
    Format : QuickTime (.mov) Durée : 00:49:52
    Domaine : Algèbre ; Mathematical Physics ; Algebraic & Complex Geometry
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2014-12-02_Dubois-Violette.mp4

Informations sur la rencontre

Nom du congrès : Algebra, deformations and quantum groups / Algèbre, déformations et groupes quantiques
Organisteurs Congrès : Kulish, Peter ; Makhlouf, Abdenacer ; Paal, Eugen ; Schlichenmaier, Martin ; Stolin, Alexander
Dates : 01/12/14 - 05/12/14
Année de la rencontre : 2014

Citation Data

DOI : 10.24350/CIRM.V.18645903
Cite this video as: Dubois-Violette, Michel (2014). The Weil algebra of a Hopf algebra. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18645903
URI : http://dx.doi.org/10.24350/CIRM.V.18645903

Bibliographie

  1. Dubois-Violette, M., & Landi, G. (2014). The Weil algebra of a Hopf algebra I: a noncommutative framework. Communications in Mathematical Physics, 326(3), 851-874 - http://dx.doi.org/10.1007/s00220-014-1902-7



Z