F Nous contacter


Single angle Totally disconnected groups (not) acting on three-manifolds

Auteurs : Pardon, John (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Hilbert's Fifth Problem asks whether every topological group which is a manifold is in fact a (smooth!) Lie group; this was solved in the affirmative by Gleason and Montgomery-Zippin. A stronger conjecture is that a locally compact topological group which acts faithfully on a manifold must be a Lie group. This is the Hilbert--Smith Conjecture, which in full generality is still wide open. It is known, however (as a corollary to the work of Gleason and Montgomery-Zippin) that it suffices to rule out the case of the additive group of p-adic integers acting faithfully on a manifold. I will present a solution in dimension three.

    57N10 - Topology of general $3$-manifolds, See also {57Mxx}

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 13/10/14
      Date de captation : 21/01/14
      Collection : Research talks
      Format : quicktime ; audio/x-aac
      Durée : 00:53:50
      Domaine : Topology ; Geometry
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : http://videos.cirm-math.fr/2014-01-21_Pardon.mp4

    Informations sur la rencontre

    Nom du congrès : Third young geometric group theory meeting / Troisième rencontre des jeunes chercheurs en géométrie des groupes
    Organisteurs Congrès : Guéritaud, François ; Kassel, Fanny ; Labourie, François ; Manning, Jason
    Dates : 20/01/14 - 24/01/14
    Année de la rencontre : 2014
    URL Congrès : http://math.univ-lille1.fr/~kassel/yggt3.html

    Citation Data

    DOI : 10.24350/CIRM.V.18608103
    Cite this video as: Pardon, John (2014). Totally disconnected groups (not) acting on three-manifolds.CIRM . Audiovisual resource. doi:10.24350/CIRM.V.18608103
    URI : http://dx.doi.org/10.24350/CIRM.V.18608103