m

F Nous contacter


0
     
Multi angle

Multi angle Somes perspectives of computational harmonic analysis in numerics

Auteurs : Grohs, Philipp (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Wavelets are standard tool in signal- and image processing. It has taken a long time until wavelet methods have been accepted in numerical analysis as useful tools for the numerical discretization of certain PDEs. In the signal- and image processing community several new frame constructions have been introduced in recent years (curvelets, shearlets, ridgelets, ...). Question: Can they be used also in numerical analysis? This talk: Small first step.

    Codes MSC :
    42C15 - General harmonic expansions, frames
    42C40 - Wavelets and other special systems
    65Txx - Numerical methods in Fourier analysis

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 12/03/15
      Date de captation : 24/01/15
      Collection : Special events ; 30 Years of Wavelets
      Format : quicktime ; audio/x-aac
      Durée : 00:32:50
      Domaine : Analyse & Applications
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : http://videos.cirm-math.fr/2015-01-24_Grohs.mp4

    Informations sur la rencontre

    Nom du congrès : 30 years of wavelets / 30 ans des ondelettes
    Organisteurs Congrès : Feichtinger, Hans G. ; Torrésani, Bruno
    Dates : 23/01/15 - 24/01/15
    Année de la rencontre : 2015
    URL Congrès : http://feichtingertorresani.weebly.com/3...

    Citation Data

    DOI : 10.24350/CIRM.V.18720803
    Cite this video as: Grohs, Philipp (2015). Somes perspectives of computational harmonic analysis in numerics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18720803
    URI : http://dx.doi.org/10.24350/CIRM.V.18720803


    Bibliographie

    1. [1] Dahmen, W., Huang, C., Kutyniok, G., Lim, W.-Q, Schwab, C., & Welper, G. (2014). Efficient resolution of anisotropic structures. In S. Dahlke, et al. (Eds.), Extraction of quantifiable information from complex systems (pp. 25-51). Cham: Springer. (Lecture Notes in Computational Science and Engineering, 102) - http://dx.doi.org/10.1007/978-3-319-08159-5_2

    2. [2] Etter, S., Grohs, P., & Obermeier, A. (2015). FFRT: a fast finite ridgelet transform for radiative transport. Multiscale Modeling & Simulation, 13(1), 1-42 - http://dx.doi.org/10.1137/140977722

    3. [3] Fonn, E., Grohs, P., & Hiptmair, R. (2014). Polar spectral scheme for the spatially homogeneous Boltzmann equation. Seminar for Applied Mathematics, ETH Zürich, report 2014-13 - http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-13.pdf

    4. [4] Grohs, P., & Obermeier, A. (2014). Optimal adaptive ridgelet schemes for linear transport equations. Seminar for Applied Mathematics, ETH Zürich, report 2014-21 - http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-21.pdf

    5. [5] Kitzler, G., & Schöberl, J. (2013). Efficient spectral methods for the spatially homogeneous Boltzmann equation. Institute for Analysis and Scientific Computing, Vienna University of Technology, report 13/2013 - http://www.asc.tuwien.ac.at/preprint/2013/asc13x2013.pdf

Z