m

F Nous contacter


0
     
Multi angle

H 1 Loop Grassmanians and local spaces

Auteurs : Mirkovic, Ivan (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : The loop Grassmannians of reductive groups will be reconsidered as a construction in the setting of “local spaces” over a curve. The notion of a local space is a version of the fundamental structure of a factorization space introduced and developed by Beilinson and Drinfeld. The weakening of the requirements formalizes some well-known examples of “almost factorization spaces.” The change of emphases leads to new constructions. The main example will be generalizations of loop Grassmannians corresponding to quadratic forms Q on based lattices. The quadratic form corresponding to the loop Grassmannian of a simply connected group G is the basic level of G.

    Codes MSC :
    14M15 - Grassmannians, Schubert varieties, flag manifolds
    14Mxx - Special varieties
    22E67 - Loop groups and related constructions, group-theoretic treatment, See also {58D05}

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 16/04/15
      Date de captation : 31/03/15
      Collection : Research talks
      Format : quicktime ; audio/x-aac
      Durée : 01:11:18
      Domaine : Algebraic & Complex Geometry ; Algèbre
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2015-03-31_Mirkovic.mp4

    Informations sur la rencontre

    Nom du congrès : Geometric Langlands and derived algebraic geometry / Langlands géométrique et la géométrie algébrique dérivée
    Organisteurs Congrès : Lysenko, Sergey ; Mirkovic, Ivan ; Riche, Simon
    Dates : 30/03/15 - 03/04/15
    Année de la rencontre : 2015
    URL Congrès : http://geomlanglands2015.weebly.com/

    Citation Data

    DOI : 10.24350/CIRM.V.18741703
    Cite this video as: Mirkovic, Ivan (2015). Loop Grassmanians and local spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18741703
    URI : http://dx.doi.org/10.24350/CIRM.V.18741703


    Bibliographie

Z