F Nous contacter


H 2 Maximum size of a set of integers with no two adding up to a square

Auteurs : Szemerédi, Endre (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
sets without squares in their difference set - historical background sequences with square free sumset modular version statement of the theorems on sets without squares in their sumset proofs

Résumé : Erdös and Sárközy asked the maximum size of a subset of the first $N$ integers with no two elements adding up to a perfect square. In this talk we prove that the tight answer is $\frac{11}{32}N$ for sufficiently large $N$. We are going to prove some stability results also. This is joint work with Simao Herdade and Ayman Khalfallah.

Codes MSC :
05A18 - Partitions of sets
11B75 - Combinatorial number theory

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 06/10/15
    Date de captation : 10/09/15
    Collection : Research talks
    Format : QuickTime (.mov) Durée : 00:36:25
    Domaine : Combinatorics ; Number Theory
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2015-09-10_Szemeredi.mp4

Informations sur la rencontre

Nom du congrès : Additive combinatorics in Marseille / Combinatoire additive à Marseille
Organisteurs Congrès : Hennecart, François ; Plagne, Alain ; Szemerédi, Endre
Dates : 07/09/15 - 11/09/15
Année de la rencontre : 2015
URL Congrès : http://conferences.cirm-math.fr/1107.html

Citation Data

DOI : 10.24350/CIRM.V.18827703
Cite this video as: Szemerédi, Endre (2015). Maximum size of a set of integers with no two adding up to a square. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18827703
URI : http://dx.doi.org/10.24350/CIRM.V.18827703