F Nous contacter


Multi angle Weighted Schur algebras or «Diagrammatic Cherednik algebras» over fields of arbitrary characteristic

Auteurs : Bowman, Christopher David (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : We begin by introducing to the diagrammatic Cherednik algebras of Webster. We then summarise some recent results (in joint work with Anton Cox and Liron Speyer) concerning the representation theory of these algebras. In particular we generalise Kleshchev-type decomposition numbers, James-Donkin row and column removal phenomena, and the Kazhdan-Lusztig approach to calculating decomposition numbers.

    Codes MSC :
    20B30 - Symmetric groups
    20F55 - Coxeter groups
    20G43 - Schur and $q$-Schur algebras

    Informations sur la rencontre

    Nom du congrès : Algebraic Combinatorics in Representation Theory / Combinatoire algébrique en théorie des représentations
    Organisteurs Congrès : Beck, Vincent ; Hernandez, David ; Jacon, Nicolas ; Littelmann, Peter
    Dates : 29/08/16 - 02/09/2016
    Année de la rencontre : 2016
    URL Congrès : http://conferences.cirm-math.fr/1490.html

    Citation Data

    DOI : 10.24350/CIRM.V.19041503
    Cite this video as: Bowman, Christopher David (2016). Weighted Schur algebras or «Diagrammatic Cherednik algebras» over fields of arbitrary characteristic. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19041503
    URI : http://dx.doi.org/10.24350/CIRM.V.19041503

    Voir aussi


    1. C. Bowman; L. Speyer, Kleshchev's decomposition numbers of diagrammatic Cherednik al- gebras, accepted and to appear in Transactions of the American Mathematical Society. - http://arxiv.org/abs/1507.06631

    2. C. Bowman; L. Speyer, An analogue of row removal for diagrammatic Cherednik algebras. - http://arxiv.org/abs/1601.05543

    3. C. Bowman; A. G. Cox; L. Speyer, A family of graded decomposition numbers for di- agrammatic Cherednik algebras, International Mathematics Research Notices IMRN 2016. - http://doi.org/10.1093/imrn/rnw101

    4. Ben Webster, Rouquier's conjecture and diagrammatic algebra. - http://arxiv.org/abs/1306.0074