m

F Nous contacter


0
     
Multi angle

H 1 On the unirationality of Hurwitz spaces

Auteurs : Tanturri, Fabio (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two joint works with Frank-Olaf Schreyer.

    Codes MSC :
    13D02 - Syzygies, resolutions, complexes
    14H10 - Families, moduli (algebraic)
    14M20 - Rational and unirational varieties
    14Q05 - Computational aspects of algebraic curves

    Informations sur la rencontre

    Nom du congrès : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe
    Organisteurs Congrès : Broustet, Amaël ; Pasquier, Boris
    Dates : 23/01/2017 - 27/01/17
    Année de la rencontre : 2017
    URL Congrès : http://conferences.cirm-math.fr/1593.html

    Citation Data

    DOI : 10.24350/CIRM.V.19115403
    Cite this video as: Tanturri, Fabio (2017). On the unirationality of Hurwitz spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19115403
    URI : http://dx.doi.org/10.24350/CIRM.V.19115403


    Voir aussi

    Bibliographie

    1. Schreyer, F.-O., & Tanturri, F. (2016). Matrix factorizations and curves in $\mathbb{P}^4$. - https://arxiv.org/abs/1611.03669

    2. Schreyer, F.-O., & Tanturri, F. (work in progress). Unirational Hurwitz spaces and liaison -

Z