F Nous contacter


Post-edited Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 1

Auteurs : ... (Auteur de la Conférence)
... (Editeur )

Loading the player...
limiting shape functions tilt-velocity duality stationary cocycles ergodic theorem for cocycles point-to-level variational formula point-to-point variational formula cocycles adapted to the potential Busemann functions stationary percolation questions of the audience

Résumé : Variational formulas for limit shapes of directed last-passage percolation models. Connections of minimizing cocycles of the variational formulas to geodesics, Busemann functions, and stationary percolation.

Codes MSC :
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
60K37 - Processes in random environments
82C22 - Interacting particle systems
82C43 - Time-dependent percolation
82D60 - Polymers

Ressources complémentaires :

    Informations sur la Vidéo

    Langue : Anglais
    Date de publication : 16/03/17
    Date de captation : 06/03/17
    Collection : Research School
    Format : MP4 (.mp4) - HD
    Durée : 01:31:47
    Domaine : Probability & Statistics ; Mathematical Physics
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2017-03-06_Seppalainen_Part1.mp4

Informations sur la rencontre

Nom du congrès : Jean-Morlet Chair - Doctoral school: Random structures in statistical mechanics and mathematical physics / Chaire Jean-Morlet - Ecole doctorale : Structures aléatoires en mécanique statistique et physique mathématique
Dates : 06/03/17 - 10/03/17
Année de la rencontre : 2017
URL Congrès : http://khanin-shlosman.weebly.com/resear...

Citation Data

DOI : 10.24350/CIRM.V.19138103
Cite this video as: (2017). Variational formulas, Busemann functions, and fluctuation exponents for the corner growth model with exponential weights - Lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19138103
URI : http://dx.doi.org/10.24350/CIRM.V.19138103

Voir aussi


  1. Balázs, M., Cator, E., & Seppäläinen, T. (2006). Cube root fluctuations for the corner growth model associated to the exclusion process. Electronic Journal of Probability, 11(42), 1094­1132 - https://arxiv.org/abs/math/0603306

  2. Balázs, M., & Seppäläinen, T. (2010). Order of current variance and diffusivity in the asymmetric simple exclusion process. Annals of Mathematics. Second Series, 171(2), 1237­1265 - http://dx.doi.org/10.4007/annals.2010.171.1237

  3. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2015). Ratios of partition functions for the log-gamma polymer. The Annals of Probability, 43(5), 2282­2331 - http://projecteuclid.org/euclid.aop/1441792286

  4. Georgiou, N., Rassoul-Agha, F., & Seppäläinen, T. (2016). Variational formulas and cocycle solutions for directed polymer and percolation models. Communications in Mathematical Physics, 346(2), 741­779 - http://dx.doi.org/10.1007/s00220-016-2613-z

  5. Rassoul-Agha, F., Seppäläinen, T., & Yilmaz, A. (2013). Quenched free energy and large deviations for random walks in random potentials. Communications on Pure and Applied Mathematics, 66(2), 202­244 - http://dx.doi.org/10.1002/cpa.21417

  6. Rassoul-Agha, F., & Seppäläinen, T. (2014). Quenched point-to-point free energy for random walks in random potentials. Probability Theory and Related Fields, 158(3-4), 711­750 - http://dx.doi.org/10.1007/s00440-013-0494-z