F Nous contacter


0

Post-edited Collective dynamics in life sciences - Lecture 1. Collective dynamics and self-organization in biological systems: challenges and some examples

Auteurs : Degond, Pierre (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
collective dynamics emergent behavior phase transition types of phase transitions kinetic equation macroscopic equation tissue self-organization blood capillary formation body attitude coordination

Résumé : Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

Codes MSC :
35L60 - Nonlinear first-order hyperbolic equations
82B26 - Phase transitions (general)
82C22 - Interacting particle systems
82C26 - Dynamic and nonequilibrium phase transitions (general)
92D50 - Animal behavior

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 13/04/2017
    Date de captation : 05/04/2017
    Collection : Research School
    Format : MP4 (.mp4) - HD
    Durée : 00:53:59
    Domaine : PDE ; Mathematical Physics ; Mathematics in Science & Technology
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2017-04-05_Degond_Part1.mp4

Informations sur la rencontre

Nom du congrès : Stochastic dynamics out of equilibrium / Dynamiques stochastiques hors d'équilibre
Organisteurs Congrès : Giacomin, Giambattista ; Olla, Stefano ; Saada, Ellen ; Spohn, Herbert ; Stoltz, Gabriel
Dates : 03/04/2017 - 07/04/2017
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1555.html

Citation Data

DOI : 10.24350/CIRM.V.19155603
Cite this video as: Degond, Pierre (2017). Collective dynamics in life sciences - Lecture 1. Collective dynamics and self-organization in biological systems: challenges and some examples. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19155603
URI : http://dx.doi.org/10.24350/CIRM.V.19155603

Voir aussi

Bibliographie

  1. Bolley, F., Cañizo, J.A., & Carrillo, J.A. (2012). Mean-field limit for the stochastic Vicsek model, Applied Mathematics Letters, 25(3), 339-343 - http://doi.org/10.1016/j.aml.2011.09.011

  2. Degond, P., Frouvelle, A., & Liu, J.G. (2015). Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Archive for Rational Mechanics and Analysis, 216, 63-115 - http://dx.doi.org/10.1007/s00205-014-0800-7

  3. Degond, P., & Motsch, S. (2008). Continuum limit of self-driven particles with orientation interaction, Mathematical Models and Methods in Applied Sciences, 18, 1193-1215 - http://dx.doi.org/10.1142/S0218202508003005

  4. Figalli, A., Kang, M.J., & Morales, J. (2015). Global well-posedness of the spatially homogeneous Kolmogorov-Vicsek model as a gradient flow. <arXiv:1509.02599> - https://arxiv.org/abs/1509.02599

  5. Jiang, N., Xiong, L., & Zhang, T.F. (2015). Hydrodynamic limits of the kinetic self-organized models. <arXiv:1508.04640> - https://arxiv.org/abs/1508.04640

  6. Vicsek, T., & Zafeiris, A. (2012). Collective motion, Physics Reports, 517, 71-140 - http://doi.org/10.1016/j.physrep.2012.03.004



Z