F Nous contacter


Post-edited Computing classical modular forms as orthogonal modular forms

Auteurs : Voight, John (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
quadratic forms and lattices isometries and genus neighbors orthogonal modular forms and Hecke action Birch theorem Even Clifford algebra weight spinor norm Hecke operator supersingular elliptic curves

Résumé : Birch gave an extremely efficient algorithm to compute a certain subspace of classical modular forms using the Hecke action on classes of ternary quadratic forms. We extend this method to compute all forms of non-square level using the spinor norm, and we exhibit an implementation that is very fast in practice. This is joint work with Jeffery Hein and Gonzalo Tornaria.

Codes MSC :
11E20 - General ternary and quaternary quadratic forms; forms of more than two variables
11F11 - Holomorphic modular forms of integral weight
11F27 - Theta series; Weil representation; theta correspondences
11F37 - Forms of half-integer weight; nonholomorphic modular forms

Ressources complémentaires :

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 29/06/17
    Date de captation : 21/06/17
    Collection : Research talks
    Format : MP4 (.mp4) - HD
    Durée : 00:57:41
    Domaine : Algebraic & Complex Geometry ; Number Theory
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2017-06-21_Voight.mp4

Informations sur la rencontre

Nom du congrès : Arithmetic, geometry, cryptography and coding theory / Arithmétique, géométrie, cryptographie et théorie des codes
Organisteurs Congrès : Aubry, Yves ; Howe, Everett ; Ritzenthaler, Christophe
Dates : 19/06/17 - 23/06/17
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1608.html

Citation Data

DOI : 10.24350/CIRM.V.19185803
Cite this video as: Voight, John (2017). Computing classical modular forms as orthogonal modular forms. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19185803
URI : http://dx.doi.org/10.24350/CIRM.V.19185803

Voir aussi


  1. Birch, B.J. (1991). Hecke actions on classes of ternary quadratic forms. In A. Pethö, M.E. Pohst, H.C. Williams & H.G. Zimmer (Eds.), Computational number theory : proceedings of the colloquium on computational number theory held at Kossuth Lajos University, Debrecen (Hungary), September 4-9, 1989 (pp. 191-212). Berlin: de Gruyter - https://www.zbmath.org/?q=an:0748.11023

  2. Hein, J. (2016). Orthogonal modular forms: An application to a conjecture of birch, algorithms and computations (Order No. 10145500). ProQuest Dissertations & Theses Global - http://gradworks.umi.com/10/14/10145500.html