F Nous contacter

Multi angle

H 1 From forcing models to realizability models

Auteurs : Fontanella, Laura (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : We discuss classical realizability, a branch of mathematical logic that investigates the computational content of mathematical proofs by establishing a correspondence between proofs and programs. Research in this field has led to the development of highly technical constructions generalizing the method of forcing in set theory. In particular, models of realizability are models of ZF, and forcing models are special cases of realizability models.

    Codes MSC :
    03E70 - Nonclassical set theories
    03F50 - Metamathematics of constructive systems
    03F55 - Intuitionistic mathematics

    Informations sur la rencontre

    Nom du congrès : 14th International workshop in set theory / XIVe Atelier international de théorie des ensembles
    Organisteurs Congrès : Dzamonja, Mirna ; Magidor, Menachem ; Velickovic, Boban ; Woodin, W. Hugh
    Dates : 09/10/2017 - 13/10/2017
    Année de la rencontre : 2017
    URL Congrès : http://conferences.cirm-math.fr/1606.html

    Citation Data

    DOI : 10.24350/CIRM.V.19228203
    Cite this video as: Fontanella, Laura (2017). From forcing models to realizability models. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19228203
    URI : http://dx.doi.org/10.24350/CIRM.V.19228203

    Voir aussi