m

F Nous contacter


0
     
Multi angle

H 1 Dimension groups and recurrence for tree subshifts

Auteurs : Berthé, Valérie (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Dimension groups are invariants of orbital equivalence. We show in this lecture how to compute the dimension group of tree subshifts. Tree subshifts are defined in terms of extension graphs that describe the left and right extensions of factors of their languages: the extension graphs are trees. This class of subshifts includes classical families such as Sturmian, Arnoux-Rauzy subshifts, or else, codings of interval exchanges. We rely on return word properties for tree subshifts: every finite word in the language of a tree word admits exactly d return words, where d is the cardinality of the alphabet.
    This is joint work with P. Cecchi, F. Dolce, F. Durand, J. Leroy, D. Perrin, S. Petite.

    Codes MSC :
    37A20 - Orbit equivalence, cocycles, ergodic equivalence relations
    37B10 - Symbolic dynamics
    68Q45 - Formal languages and automata
    68R15 - Combinatorics on words

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 11/12/2017
      Date de captation : 07/12/2017
      Collection : Research talks
      Format : MP4
      Durée : 01:02:42
      Domaine : Dynamical Systems & ODE ; Computer Science
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2017-12-07_Berthe.mp4

    Informations sur la rencontre

    Nom du congrès : Jean-Morlet chair: Tiling and recurrence / Chaire Jean-Morlet : Pavages et récurrence
    Organisteurs Congrès : Akiyama, Shigeki ; Arnoux, Pierre
    Dates : 04/12/2017 - 08/12/2017
    Année de la rencontre : 2017
    URL Congrès : https://akiyama-arnoux.weebly.com/conference.html

    Citation Data

    DOI : 10.24350/CIRM.V.19250603
    Cite this video as: Berthé, Valérie (2017). Dimension groups and recurrence for tree subshifts. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19250603
    URI : http://dx.doi.org/10.24350/CIRM.V.19250603


    Voir aussi

    Bibliographie

Z