F Nous contacter


0

Multi angle From categories to curve-counts in mirror symmetry

Auteurs : Perutz, Tim (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : I will report on aspects of work with Sheridan and Ganatra in which we show how homo- logical mirror symmetry for Calabi-Yau manifolds implies equality of Yukawa couplings on the A- and B-sides. On the A-side, these couplings are generating functions for genus-zero GW invariants. On the B-side, one has a degenerating family of CY manifolds, and the couplings are fiberwise integrals involving a holomorphic volume form. We show that the Fukaya category implicitly "knows" the correct normalization of this volume form, as well as the mirror map.

    Codes MSC :
    53D37 14J33 - Mirror symmetry

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 17/06/15
      Date de captation : 02/06/15
      Collection : Research talks
      Format : quicktime ; audio/x-aac
      Durée : 01:07:35
      Domaine : Algebraic & Complex Geometry ; Geometry
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : http://videos.cirm-math.fr/2015-06-02_Perutz.mp4

    Informations sur la rencontre

    Nom du congrès : Jean-Morlet Chair: Moduli spaces in symplectic topology and in Gauge theory / Chaire Jean-Morlet : Espaces de modules en topologie symplectique et en théorie de Jauge
    Organisteurs Congrès : Hofer, Helmut ; Itenberg, Ilia ; Lalonde, François ; McDuff, Dusa ; Ono, Kaoru ; Polterovich, Leonid ; Teleman, Andrei
    Dates : 01/06/15 - 05/06/15
    Année de la rencontre : 2015
    URL Congrès : http://lalondeteleman.weebly.com/main-co...

    Citation Data

    DOI : 10.24350/CIRM.V.18770403
    Cite this video as: Perutz, Tim (2015). From categories to curve-counts in mirror symmetry. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18770403
    URI : http://dx.doi.org/10.24350/CIRM.V.18770403


    Bibliographie

Z