Déposez votre fichier ici pour le déplacer vers cet enregistrement.

A thousand years old problem is to determine when a square free integer $n$ is a congruent number ,i,e, the areas of right angled triangles with sides of rational lengths. This problem has a some beautiful connection with the BSD conjecture for elliptic curves $E_n : ny^2 = x^3 - x$. In fact by BSD, all $n= 5, 6, 7$ mod $8$ should be congruent numbers, and most of $n=1, 2, 3$ mod $8$ should not be congruent numbers. Recently, Alex Smith has proved that at least 41.9% of $n=1,2,3$ satisfy (refined) BSD in rank $0$, and at least 55.9% of $n=5,6,7$ mod $8$ satisfy (weak) BSD in rank $1$. This implies in particular that at last 41.9% of $n=1,2,3$ mod $8$ are not congruent numbers, and 55.9% of $n=5, 6, 7$ mod $8$ are congruent numbers. I will explain the ingredients used in Smith's proof: including the classical work of Heath-Brown and Monsky on the distribution F_2 rank of Selmer group of E_n, the complex formula for central value and derivative of L-fucntions of Waldspurger and Gross-Zagier and their extension by Yuan-Zhang-Zhang, and their mod 2 version by Tian-Yuan-Zhang. A thousand years old problem is to determine when a square free integer $n$ is a congruent number ,i,e, the areas of right angled triangles with sides of rational lengths. This problem has a some beautiful connection with the BSD conjecture for elliptic curves $E_n : ny^2 = x^3 - x$. In fact by BSD, all $n= 5, 6, 7$ mod $8$ should be congruent numbers, and most of $n=1, 2, 3$ mod $8$ should not be congruent numbers. Recently, Alex Smith has ...

11G40 ; 11D25 ; 11R29

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The assertions made by L. J. Mordell in his paper in Acta Mathematica 44(1952) are discussed. Mordell had been to a certain extent anticipated by E. Jacobsthal (1939).
backward induction - congruence - equation - non-zero coefficients - polynomials

11D09 ; 11D25 ; 11D41

Filtrer

Domaine
Codes MSC
Audience

Z
uelle
F Nous contacter

Tweet
0

Documents  11D25 | enregistrements trouvés : 2

O
     

-A +A

P Q