Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Theta lifts of tempered representations and Langlands parameters
Gan, Wee Teck (Auteur de la Conférence) | CIRM (Editeur )

In joint work with Hiraku Atobe, we determine the theta lifting of irreducible tempered representations for symplectic-metaplectic-orthogonal and unitary dual pairs in terms of the local Langlands correspondence. The main new tool for proving our result is the recently established local Gross-Prasad conjecture.

11F27 ; 11F70 ; 22E50

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Single angle  On equality of arithmetic and analytic exterior square root numbers
Shahidi, Freydoon (Auteur de la Conférence) | CIRM (Editeur )

This is a joint work with J. Cogdell and T.-L. Tsai. I will report on the progress made in proving the equality of Artin epsilon factors for exterior and symmetric square L-functions with those on the representation theoretic side through the local Langlands correspondence. The equality for L-functions has already been established by Henniart. I will show how the equality can be proved if one has the stability of these factors under highly ramified twists for supercuspidal representations. I will then discuss the stability question for supercuspidals by discussing how it can be deduced from a generalization of germ expansions of Jacquet and Ye from Bessel functions to certain partial Bessel functions. I will elaborate by explaining the stability in the case of GL(2) through general lemmas proved so far. This is a joint work with J. Cogdell and T.-L. Tsai. I will report on the progress made in proving the equality of Artin epsilon factors for exterior and symmetric square L-functions with those on the representation theoretic side through the local Langlands correspondence. The equality for L-functions has already been established by Henniart. I will show how the equality can be proved if one has the stability of these factors under highly ...

11F66 ; 11F70 ; 11F80 ; 22E50

Filtrer

Type
Domaine
Codes MSC

Z
n class="progBar" style="width:0px;">

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Lecture 4: The relative trace formula
Offen, Omer (Auteur de la Conférence) | CIRM (Editeur )

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Representation theory, effective ergodic theorems, and applications - Lecture 1
Nevo, Amos (Auteur de la Conférence) | CIRM (Editeur )

Our first purpose is to show how aspects of the representation theory of (non-amenable) algebraic groups can be utilized to derive effective ergodic theorems for their actions. Our second purpose is to demonstrate some the many interesting applications that ergodic theorems with a rate of convergence have in a variety of problems. We will start by a discussion of property $T$ and show how to extend the spectral estimates it provides considerably beyond their usual formulations. We will also show how to derive best possible spectral estimates via representation theory in some cases. In turn, such spectral estimates will be used to derive effective ergodic theorems. Finally we will show how the rate of convergence in the ergodic theorem implies effective solutions in a host of natural problems, including the non-Euclidean lattice point counting problem, fast equidistribution of lattice orbits on homogenous spaces, and best possible exponents of Diophantine approximation on homogeneous algebraic varieties. Our first purpose is to show how aspects of the representation theory of (non-amenable) algebraic groups can be utilized to derive effective ergodic theorems for their actions. Our second purpose is to demonstrate some the many interesting applications that ergodic theorems with a rate of convergence have in a variety of problems. We will start by a discussion of property $T$ and show how to extend the spectral estimates it provides considerably ...

37A30 ; 37A15 ; 37P55 ; 11F70

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Representation theory, effective ergodic theorems, and applications - Lecture 2
Nevo, Amos (Auteur de la Conférence) | CIRM (Editeur )

Our first purpose is to show how aspects of the representation theory of (non-amenable) algebraic groups can be utilized to derive effective ergodic theorems for their actions. Our second purpose is to demonstrate some the many interesting applications that ergodic theorems with a rate of convergence have in a variety of problems. We will start by a discussion of property $T$ and show how to extend the spectral estimates it provides considerably beyond their usual formulations. We will also show how to derive best possible spectral estimates via representation theory in some cases. In turn, such spectral estimates will be used to derive effective ergodic theorems. Finally we will show how the rate of convergence in the ergodic theorem implies effective solutions in a host of natural problems, including the non-Euclidean lattice point counting problem, fast equidistribution of lattice orbits on homogenous spaces, and best possible exponents of Diophantine approximation on homogeneous algebraic varieties. Our first purpose is to show how aspects of the representation theory of (non-amenable) algebraic groups can be utilized to derive effective ergodic theorems for their actions. Our second purpose is to demonstrate some the many interesting applications that ergodic theorems with a rate of convergence have in a variety of problems. We will start by a discussion of property $T$ and show how to extend the spectral estimates it provides considerably ...

37A30 ; 37A15 ; 37P55 ; 11F70

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Representation theory, effective ergodic theorems, and applications - Lecture 3
Nevo, Amos (Auteur de la Conférence) | CIRM (Editeur )

Our first purpose is to show how aspects of the representation theory of (non-amenable) algebraic groups can be utilized to derive effective ergodic theorems for their actions. Our second purpose is to demonstrate some the many interesting applications that ergodic theorems with a rate of convergence have in a variety of problems. We will start by a discussion of property $T$ and show how to extend the spectral estimates it provides considerably beyond their usual formulations. We will also show how to derive best possible spectral estimates via representation theory in some cases. In turn, such spectral estimates will be used to derive effective ergodic theorems. Finally we will show how the rate of convergence in the ergodic theorem implies effective solutions in a host of natural problems, including the non-Euclidean lattice point counting problem, fast equidistribution of lattice orbits on homogenous spaces, and best possible exponents of Diophantine approximation on homogeneous algebraic varieties. Our first purpose is to show how aspects of the representation theory of (non-amenable) algebraic groups can be utilized to derive effective ergodic theorems for their actions. Our second purpose is to demonstrate some the many interesting applications that ergodic theorems with a rate of convergence have in a variety of problems. We will start by a discussion of property $T$ and show how to extend the spectral estimates it provides considerably ...

37A30 ; 37A15 ; 37P55 ; 11F70