F Nous contacter


0

Documents  11K65 | enregistrements trouvés : 1

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Given an additive function $f$ and a multiplicative function $g$, let
$E(f,g;x)=\#\left \{ n\leq x:f(n)=g(n) \right \}$
We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that
$E(\varepsilon ,g;x)\gg \frac{x}{\left ( \log \log x\right )^{1+\varepsilon }}$,
while we prove that $E(\varepsilon ,g;x)=o(x)$ as $x\rightarrow \infty$ for every multiplicative function $g$.
Given an additive function $f$ and a multiplicative function $g$, let
$E(f,g;x)=\#\left \{ n\leq x:f(n)=g(n) \right \}$
We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that
$E(\varepsilon ...

11N37 ; 11K65 ; 11N60

Nuage de mots clefs ici

Z