F Nous contacter


0

Documents  14F20 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients. In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. ...

32P05 ; 14F20 ; 14F40 ; 14G22 ; 32S30

We define the characteristic cycle of an étale sheaf on a smooth variety of arbitrary dimension in positive characteristic using the singular support, constructed by Beilinson very recently. The characteristic cycle satisfies a Milnor formula for vanishing cycles and an index formula for the Euler-Poincaré characteristic.

14F20 ; 14G17 ; 11S15

Nuage de mots clefs ici

Z