F Nous contacter


0

Documents  14F40 | enregistrements trouvés : 1

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients. In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. ...

32P05 ; 14F20 ; 14F40 ; 14G22 ; 32S30

Nuage de mots clefs ici

Z