F Nous contacter


0

Documents  16K50 | enregistrements trouvés : 1

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $_H^H\mathcal{Y}\mathcal{D}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $BM(k, H, R)$ established by Zhang. To this end, we have to develop the braided bi-Galois theory initiated by Schauenburg, which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category. Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $_H^H\mathcal{Y}\mathcal{D}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf ...

16T05 ; 16K50

Nuage de mots clefs ici

Z