Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Distributive Aronszajn trees
Rinot, Assaf (Auteur de la Conférence) | CIRM (Editeur )

It is well-known that the statement "all $\aleph_1$-Aronszajn trees are special'' is consistent with ZFC (Baumgartner, Malitz, and Reinhardt), and even with ZFC+GCH (Jensen). In contrast, Ben-David and Shelah proved that, assuming GCH, for every singular cardinal $\lambda$: if there exists a $\lambda^+$-Aronszajn tree, then there exists a non-special one. Furthermore:
Theorem (Ben-David and Shelah, 1986) Assume GCH and that $\lambda$ is singular cardinal. If there exists a special $\lambda^+$-Aronszajn tree, then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.
This suggests that following stronger statement:
Conjecture. Assume GCH and that $\lambda$ is singular cardinal.
If there exists a $\lambda^+$-Aronszajn tree,
then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.

The assumption that there exists a $\lambda^+$-Aronszajn tree is a very mild square-like hypothesis (that is, $\square(\lambda^+,\lambda)$).
In order to bloom a $\lambda$-distributive tree from it, there is a need for a toolbox, each tool taking an abstract square-like sequence and producing a sequence which is slightly better than the original one.
For this, we introduce the monoid of postprocessing functions and study how it acts on the class of abstract square sequences.
We establish that, assuming GCH, the monoid contains some very powerful functions. We also prove that the monoid is closed under various mixing operations.
This allows us to prove a theorem which is just one step away from verifying the conjecture:

Theorem 1. Assume GCH and that $\lambda$ is a singular cardinal.
If $\square(\lambda^+,<\lambda)$ holds, then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.
Another proof, involving a 5-steps chain of applications of postprocessing functions, is of the following theorem.

Theorem 2. Assume GCH. If $\lambda$ is a singular cardinal and $\square(\lambda^+)$ holds, then there exists a $\lambda^+$-Souslin tree which is coherent mod finite.

This is joint work with Ari Brodsky. See: http://assafrinot.com/paper/29
It is well-known that the statement "all $\aleph_1$-Aronszajn trees are special'' is consistent with ZFC (Baumgartner, Malitz, and Reinhardt), and even with ZFC+GCH (Jensen). In contrast, Ben-David and Shelah proved that, assuming GCH, for every singular cardinal $\lambda$: if there exists a $\lambda^+$-Aronszajn tree, then there exists a non-special one. Furthermore:
Theorem (Ben-David and Shelah, 1986) Assume GCH and that $\lambda$ is singular ...

03E05 ; 03E65 ; 03E35 ; 05C05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the component structure of the uniform spanning forest in $\mathbb{Z}^d$ changes every dimension for $d > 8$. This sharpens an earlier result of Benjamini, Kesten, Schramm and the speaker (Annals Math 2004), where we established a phase transition every four dimensions. The proofs are based on a the connection to loop-erased random walks. In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the ...

05C05 ; 05C80 ; 60G50 ; 60J10 ; 60K35 ; 82B43

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Hopf algebra of Lie group integrators has been introduced by H. Munthe-Kaas and W. Wright as a tool to handle Runge-Kutta numerical methods on homogeneous spaces. It is spanned by planar rooted forests, possibly decorated. We will describe a canonical surjective Hopf algebra morphism onto the shuffle Hopf algebra which deserves to be called planar arborification. The space of primitive elements is a free post-Lie algebra, which in turn will permit us to describe the corresponding co-arborification process.
Joint work with Charles Curry (NTNU Trondheim), Kurusch Ebrahimi-Fard (NTNU) and Hans Z. Munthe-Kaas (Univ. Bergen).
The two triangles appearing at 24'04" and 25'19'' respectively should be understood as a #.
The Hopf algebra of Lie group integrators has been introduced by H. Munthe-Kaas and W. Wright as a tool to handle Runge-Kutta numerical methods on homogeneous spaces. It is spanned by planar rooted forests, possibly decorated. We will describe a canonical surjective Hopf algebra morphism onto the shuffle Hopf algebra which deserves to be called planar arborification. The space of primitive elements is a free post-Lie algebra, which in turn will ...

81T15 ; 16T05 ; 17D25 ; 65L06 ; 05C05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Aldous-Broder algorithm allows one to sample the uniform spanning tree of a finite graph as the set of first-entry edges of a simple random walk. In this talk, I will discuss how this can be extended to infinite transient graphs by replacing the random walk with the random interlacement process. I will then outline how this new sampling algorithm can be used to compute critical exponents for the uniform spanning forest of $Z^d$.

60D05 ; 05C05 ; 20F65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Shuffles of trees
Hoffbeck, Eric (Auteur de la Conférence) | CIRM (Editeur )

We study a notion of shuffle for trees which extends the usual notion of a shuffle for two natural numbers. Our notion of shuffle is motivated by the theory of operads and occurs in the theory of dendroidal sets. We give several equivalent descriptions of the shuffles, and prove some algebraic and combinatorial properties. In addition, we characterize shuffles in terms of open sets in a topological space associated to a pair of trees. This is a joint work with Ieke Moerdijk. We study a notion of shuffle for trees which extends the usual notion of a shuffle for two natural numbers. Our notion of shuffle is motivated by the theory of operads and occurs in the theory of dendroidal sets. We give several equivalent descriptions of the shuffles, and prove some algebraic and combinatorial properties. In addition, we characterize shuffles in terms of open sets in a topological space associated to a pair of trees. This is a ...

55U10 ; 18D50 ; 05C05

Filtrer

Type
Domaine
Codes MSC

Z