F Nous contacter


0

Documents  35K65 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In this talk I will report on some of the progress made by the author and collaborators on the topic of nonlinear diffusion equations involving long distance interactions in the form of fractional Laplacian operators. The nonlinearities are of the following types: porous medium, fast diffusion or p-Laplacian. Results cover well-posedness, regularity, free bouncadaries, asymptotics, extinction, and others. Differences with standard diffusion have been specially examined. In this talk I will report on some of the progress made by the author and collaborators on the topic of nonlinear diffusion equations involving long distance interactions in the form of fractional Laplacian operators. The nonlinearities are of the following types: porous medium, fast diffusion or p-Laplacian. Results cover well-posedness, regularity, free bouncadaries, asymptotics, extinction, and others. Differences with standard diffusion have ...

26A33 ; 35K55 ; 35K65 ; 35S10

The theory of mean field type control (or control of MacKean-Vlasov) aims at describing the behaviour of a large number of agents using a common feedback control and interacting through some mean field term. The solution to this type of control problem can be seen as a collaborative optimum. We will present the system of partial differential equations (PDE) arising in this setting: a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation. They describe respectively the evolution of the distribution of the agents' states and the evolution of the value function. Since it comes from a control problem, this PDE system differs in general from the one arising in mean field games.
Recently, this kind of model has been applied to crowd dynamics. More precisely, in this talk we will be interested in modeling congestion effects: the agents move but try to avoid very crowded regions. One way to take into account such effects is to let the cost of displacement increase in the regions where the density of agents is large. The cost may depend on the density in a non-local or in a local way. We will present one class of models for each case and study the associated PDE systems. The first one has classical solutions whereas the second one has weak solutions. Numerical results based on the Newton algorithm and the Augmented Lagrangian method will be presented.
This is joint work with Yves Achdou.
The theory of mean field type control (or control of MacKean-Vlasov) aims at describing the behaviour of a large number of agents using a common feedback control and interacting through some mean field term. The solution to this type of control problem can be seen as a collaborative optimum. We will present the system of partial differential equations (PDE) arising in this setting: a forward Fokker-Planck equation and a backward Hamilto...

35K40 ; 35K55 ; 35K65 ; 35D30 ; 49N70 ; 49K20 ; 65K10 ; 65M06

Nuage de mots clefs ici

Z