Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear stochastic transport equations and non-linear modulated dispersive PDEs. It is possible to show that the sample paths of Brownian motion or fractional Brownian motion and related processes have almost surely this kind of irregularity. (joint work with R. Catellier and K. Chouk) We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear ...

35R60 ; 35Q53 ; 35D30 ; 60H15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed in the talk.
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed ...

37K10 ; 35C07 ; 35C08 ; 35Q53 ; 35Q55 ; 76B15 ; 76Fxx

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We start by presenting some results on the stabilization, rapid or in finite time, of control systems modeled by means of ordinary differential equations. We study the interest and the limitation of the damping method for the stabilization of control systems. We then describe methods to transform a given linear control system into new ones for which the rapid stabilization is easy to get. As an application of these methods we show how to get rapid stabilization for Korteweg-de Vries equations and how to stabilize in finite time $1-D$ parabolic linear equations by means of periodic time-varying feedback laws. We start by presenting some results on the stabilization, rapid or in finite time, of control systems modeled by means of ordinary differential equations. We study the interest and the limitation of the damping method for the stabilization of control systems. We then describe methods to transform a given linear control system into new ones for which the rapid stabilization is easy to get. As an application of these methods we show how to get ...

35B35 ; 35Q53 ; 93C10 ; 93C20 ; 35K05 ; 93B05 ; 93B17 ; 93B52

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Solitons vs collapses
Kuznetsov, Evgenii (Auteur de la Conférence) | CIRM (Editeur )

This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrodinger equation, the ZK equation and the three-wave system is used to show how the boundedness of the Hamiltonian H, and hence the stability of the soliton minimizing H can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
This work was supported by the Russian Science Foundation (project no. 14-22-00174).
This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation ...

35Q53 ; 35Q55 ; 37K10 ; 37N10 ; 76B15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Geometric heat flows and caloric gauges
Tataru, Daniel (Auteur de la Conférence) | CIRM (Editeur )

Choosing favourable gauges is a crucial step in the study of nonlinear geometric dispersive equations. A very successful tool, that has emerged originally in work of Tao on wave maps, is the use of caloric gauges, defined via the corresponding geometric heat flows. The aim of this talk is to describe two such flows and their associated gauges, namely the harmonic heat flow and the Yang-Mills heat flow.

70S15 ; 35Q53 ; 35Q55

Filtrer

Type
Domaine
Codes MSC

Z