F Nous contacter


0

Documents  37B10 | enregistrements trouvés : 8

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model. I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...

37B50 ; 37B10 ; 37B40

I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model. I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...

37B50 ; 37B10 ; 37B40

I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model. I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...

37B50 ; 37B10 ; 37B40

We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss further improvements when more assumptions are allowed. This is ongoing work with Michael Damron. We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss ...

37B10 ; 37A25 ; 68R15

I will survey recent results on the generic properties of probability measures invariant by the geodesic flow defined on a nonpositively curved manifold. Such a flow is one of the early example of a non-uniformly hyperbolic system. I will talk about ergodicity and mixing both in the compact and noncompact setting, and ask some questions about the associated frame flow, which is partially hyperbolic.

37B10 ; 37D40 ; 34C28 ; 37C20 ; 37C40 ; 37D35

Multi angle  Amenable groups - Lecture 2
Bartholdi, Laurent (Auteur de la Conférence) | CIRM (Editeur )

I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: Means, Folner sets, random walks, and paradoxical decompositions.
Lecture 2. I will describe recent work by de la Salle et al. leading to a quite general criterion for amenability, as well as some still open problems. In particular, I will show that full topological groups of minimal Z-shifts are amenable.
Lecture 3. I will explain links between amenability and cellular automata, in particular the "Garden of Eden" properties by Moore and Myhill: there is a characterization of amenable groups in terms of whether these classical theorems still hold.
I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: ...

37B15 ; 37B10 ; 43A07 ; 68Q80

An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for low complexity subshifts has become very active in the last five years. Actually, for zero entropy subshift, this group is much more tame than in the SFT case. In a first lecture we will recall some striking property of this group for subshift of finite type. The second lecture is devoted to the description of this group for classical minimal sub shifts of zero entropy with sublinear complexity and for the family of Toeplitz subshifts. The last lecture concerns the algebraic properties of the automorphism group for subshifts with sub-exponential complexity. We will also explain why sonic group like the Baumslag-Solitar $BS(1,n)$ or $SL(d,Z), d >2$, can not embed into an automorphism group of a zero entropy subshift. An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for ...

37B10 ; 37B50 ; 37B15 ; 68Q80

Nuage de mots clefs ici

Z