F Nous contacter


0

Documents  37K15 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform analyticity for a large set of initial data, turbulence phenomenon for a dense set of smooth initial data in large Sobolev spaces.
From joint works with Patrick Gérard.
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform ...

35B40 ; 35B15 ; 35Q55 ; 37K15 ; 47B35

We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as the correction dispersive term. We use the inverse scattering approach and the nonlinear steepest descent method of Deift and Zhou (1993) revisited by the $\bar{\partial}$-analysis of Dieng-McLaughlin (2008) and complemented by the recent work of Borghese-Jenkins-McLaughlin (2016) on soliton resolution for the focusing nonlinear Schrödinger equation. This is a joint work with R. Jenkins, J. Liu and P. Perry. We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as ...

35Q55 ; 37K15 ; 37K40 ; 35P25 ; 35A01

Nuage de mots clefs ici

Z