F Nous contacter


0

Documents  43A85 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform plays a fundamental role. In the geometric situation this role is given to some "Laplacian operator" with some properties.
In the last part we will show that the previous theory could help to revisit the topic of regularity of Gaussian processes, and to give a criterium only based on the regularity of the covariance operator.
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform ...

42C15 ; 43A85 ; 46E35 ; 58J35 ; 43A80 ; 62G05 ; 62G10 ; 62G20

Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi Polynomials, Tomography and the harmonic analysis of the ball, the study of the Cosmological Microwave Background and the harmonic analysis of the sphere. In these last years it has been proposed to build a Littlewood-Paley analysis and a wavelet theory associated to the Laplacien of a Riemannian manifold or more generally a positive operator associated to a suitable Dirichlet space with a good behavior of the associated heat kernel. This can help to revisit some classical studies of the regularity of Gaussian field.

Keywords: heat kernel - functional calculus - wavelet - Gaussian process
Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi ...

43A85 ; 60G15 ; 60G17 ; 58C50

Nuage de mots clefs ici

Z