F Nous contacter


0

Documents  47A10 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, we apply our techniques to the more general Robin boundary condition and to a transmission problem which is of significant interest in physical applications. We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, ...

35J10 ; 35P10 ; 35P15 ; 47A10 ; 81Q12 ; 82D55

In this talk new enclosures for the spectra of operators associated with second order Cauchy problems are presented for non-selfadjoint damping. Our new results yield much better bounds than the numerical range of these non-selfadjoint operators for both uniformly accretive and sectorial damping.
(joint work with B. Jacob, Carsten Trunk and H. Vogt)

47A10 ; 47A12 ; 34G10 ; 47D06 ; 76Bxx

Nuage de mots clefs ici

Z