F Nous contacter


0

Documents  52A22 | enregistrements trouvés : 3

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi. La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...

60D05 ; 60F05 ; 52A22 ; 60G55

Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of $\mathbb{R}^d$ into polyhedral cones. The typical cone of this tessellation, called a 'random Schläfli cone', is the object of our study. We provide first moments and mixed second moments of some geometric functionals, and compute probabilities of non-trivial intersection of a random Schläfli cone with a fixed polyhedral cone, or of two independent random Schläfli cones.

Parts are joint work with Matthias Reitzner, others with Daniel Hug.
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of ...

52A22 ; 60D05 ; 52A55 ; 52C35 ; 52B05 ; 51M20

Multi angle  Curvature measures of random sets
Zähle, Martina (Auteur de la Conférence) | CIRM (Editeur )

A survey on some developments in curvature theory for random sets will be given. We first consider previous models with classical singularities like polyconvex sets or unions of sets with positive reach. The main part of the talk concerns extensions to certain classes of random fractals which have been investigated in the last years. In these cases limits of rescaled versions for suitable approximations are used.

53C65 ; 52A22 ; 60D05 ; 28A80 ; 28A75

Nuage de mots clefs ici

Z