F Nous contacter


0

Documents  60B20 | enregistrements trouvés : 2

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This finding triggered an enormous research activity in recent years both in signal processing applications as well as their mathematical foundations. The present talk discusses connections of compressive sensing and time-frequency analysis (the sister of wavelet theory). In particular, we give on overview on recent results on compressive sensing with time-frequency structured random matrices.

Keywords: compressive sensing - time-frequency analysis - wavelets - sparsity - random matrices - $\ell_1$-minimization - radar - wireless communications
One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This ...

94A20 ; 94A08 ; 42C40 ; 60B20 ; 90C25

Multi angle  Free probability and random matrices
Biane, Philippe (Auteur de la Conférence) | CIRM (Editeur )

I will explain how free probability, which is a theory of independence for non-commutative random variables, can be applied to understand the spectra of various models of random matrices.

15B52 ; 60B20 ; 46L53 ; 46L54

Nuage de mots clefs ici

Z