F Nous contacter


0

Documents  60H30 | enregistrements trouvés : 5

O
     

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the non-negativity of the solution, conserves the mass and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. This convergence result is proved by assuming only that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, under these assumptions, we obtain a new proof of existence of solutions for such equations.
We apply our results to several examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.
In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the non-negativity of the solution, conserves the mass and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. This convergence result is proved by assuming only that the coefficients are continuous and satisfy a suitable linear growth property ...

35K55 ; 35Q84 ; 60H15 ; 60H30

The mathematical framework of variational inequalities is a powerful tool to model problems arising in mechanics such as elasto-plasticity where the physical laws change when some state variables reach a certain threshold [1]. Somehow, it is not surprising that the models used in the literature for the hysteresis effect of non-linear elasto-plastic oscillators submitted to random vibrations [2] are equivalent to (finite dimensional) stochastic variational inequalities (SVIs) [3]. This presentation concerns (a) cycle properties of a SVI modeling an elasto-perfectly-plastic oscillator excited by a white noise together with an application to the risk of failure [4,5]. (b) a set of Backward Kolmogorov equations for computing means, moments and correlation [6]. (c) free boundary value problems and HJB equations for the control of SVIs. For engineering applications, it is related to the problem of critical excitation [7]. This point concerns what we are doing during the CEMRACS research project. (d) (if time permits) on-going research on the modeling of a moving plate on turbulent convection [8]. This is a mixture of joint works and / or discussions with, amongst others, A. Bensoussan, L. Borsoi, C. Feau, M. Huang, M. Laurière, G. Stadler, J. Wylie, J. Zhang and J.Q. Zhong. The mathematical framework of variational inequalities is a powerful tool to model problems arising in mechanics such as elasto-plasticity where the physical laws change when some state variables reach a certain threshold [1]. Somehow, it is not surprising that the models used in the literature for the hysteresis effect of non-linear elasto-plastic oscillators submitted to random vibrations [2] are equivalent to (finite dimensional) stochastic ...

74H50 ; 35R60 ; 60H10 ; 60H30 ; 74C05

We analyse how reverting Random Number Generator can be efficiently used to save memory in solving dynamic programming equation. For SDEs, it takes the form of forward and backward Euler scheme. Surprisingly the error induced by time reversion is of order 1.

60H10 ; 60H15 ; 60H30 ; 65C10

Nuage de mots clefs ici

Z